期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Latest advances and progress in the microbubble flotation of fine minerals:Microbubble preparation,equipment,and applications 被引量:1
1
作者 Ziyong Chang Sensen Niu +2 位作者 Zhengchang Shen Laichang Zou Huajun Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1244-1260,共17页
In the past few decades,microbubble flotation has been widely studied in the separation and beneficiation of fine minerals.Compared with conventional flotation,microbubble flotation has obvious advantages,such as high... In the past few decades,microbubble flotation has been widely studied in the separation and beneficiation of fine minerals.Compared with conventional flotation,microbubble flotation has obvious advantages,such as high grade and recovery and low consumption of flotation reagents.This work systematically reviews the latest advances and research progress in the flotation of fine mineral particles by microbubbles.In general,microbubbles have small bubble size,large specific surface area,high surface energy,and good selectivity and can also easily be attached to the surface of hydrophobic particles or large bubbles,greatly reducing the detaching probability of particles from bubbles.Microbubbles can be prepared by pressurized aeration and dissolved air,electrolysis,ultrasonic cavitation,photocatalysis,solvent exchange,temperature difference method(TDM),and Venturi tube and membrane method.Correspondingly,equipment for fine-particle flotation is categorized as microbubble release flotation machine,centrifugal flotation column,packed flotation column,and magnetic flotation machine.In practice,microbubble flotation has been widely studied in the beneficiation of ultrafine coals,metallic minerals,and nonmetallic minerals and exhibited superiority over conventional flotation machines.Mechanisms underpinning the promotion of fine-particle flotation by nanobubbles include the agglomeration of fine particles,high stability of nanobubbles in aqueous solutions,and enhancement of particle hydrophobicity and flotation dynamics. 展开更多
关键词 microbubble preparation FLOTATION fine minerals flotation equipment bubble-particle interaction
下载PDF
Enhancing XRF sensor-based sorting of porphyritic copper ore using particle swarm optimization-support vector machine(PSO-SVM)algorithm
2
作者 Zhengyu Liu Jue Kou +5 位作者 Zengxin Yan Peilong Wang Chang Liu Chunbao Sun Anlin Shao Bern Klein 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期545-556,共12页
X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hi... X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms. 展开更多
关键词 XRF sensor-based sorting PSO-SVM algorithm Copper ore pebble Receiver operating curve(ROC) Net smelter return(NSR)
下载PDF
Effects of minerals in ferric bauxite on sodium carbonate decomposition and volatilization 被引量:1
3
作者 胡文韬 王化军 +1 位作者 刘欣伟 孙传尧 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2503-2507,共5页
Direct reduction is an emerging technology for ferric bauxite utilization. However, because of sodium volatilization, its sodium carbonate consumption is considerably higher than that in ordinary bauxite processing te... Direct reduction is an emerging technology for ferric bauxite utilization. However, because of sodium volatilization, its sodium carbonate consumption is considerably higher than that in ordinary bauxite processing technology. TG-DSC and XRD were applied to detecting phase transformation and mass loss in direct reduction to reveal the mechanism on sodium volatilization. The results show that the most significant influence factor of ferric bauxite on sodium volatilization in direct reduction system is its iron content. Sodium volatilization is probably ascribed to the instability of amorphous substances structure. Amorphous substances are the intermediate-products of the reaction, and the volatilization rate of sodium increases with its generating rate. These amorphous substances are volatile, thus, more sodium is volatilized with its generation. A small amount of amorphous substances are generated in the reaction between Na2CO3 and Al2O3; thus, only 3.15% of sodium is volatilized. Similarly, the volatilization rate is 1.87% in the reaction between Na2CO3 and SiO2. However, the volatilization rate reaches 7.64% in the reaction between Na2CO3 and Fe2O3 because of the generation of a large amount of amorphous substances. 展开更多
关键词 碳酸钠 挥发率 矿物质 铁铝 铝矿物 NA2CO3 直接还原法 非晶态物质
下载PDF
Particulate flow modelling in a spiral separator by using the Eulerian multi-fluid VOF approach 被引量:2
4
作者 Lingguo Meng Shuling Gao +4 位作者 Dezhou Wei Qiang Zhao Baoyu Cui Yanbai Shen Zhenguo Song 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期251-263,共13页
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ... The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation. 展开更多
关键词 Spiral separator Computational fluid dynamics(CFD) Eulerian multi-fluid VOF model Bagnold effect Particulate flow
下载PDF
Enhanced inhibition of talc flotation using acidified sodium silicate and sodium carboxymethyl cellulose as the combined inhibitor 被引量:2
5
作者 Jiwei Xue Huazhen Tu +3 位作者 Jin Shi Yanni An He Wan Xianzhong Bu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1310-1319,共10页
The flotation separation of chalcopyrite and talc is challenging due to their similar natural floatability characteristics.Besides,it is usually difficult to effectively inhibit talc by adding sodium carboxymethyl cel... The flotation separation of chalcopyrite and talc is challenging due to their similar natural floatability characteristics.Besides,it is usually difficult to effectively inhibit talc by adding sodium carboxymethyl cellulose(CMC)alone during chalcopyrite flotation.Here,a combined inhibitor comprising acidified sodium silicate(ASS)and CMC was employed to realize effective flotation separation of chalcopyrite and talc,and the combined inhibition mechanism was further investigated.Microflotation results showed that adding ASS strengthened the inhibitory effect of CMC on talc and improved the separation of chalcopyrite and talc.The zeta potential,Fourier transform infrared,and X-ray photoelectron spectroscopy analysis indicated that CMC was mainly adsorbed on the talc surface via hydroxyl and carboxyl groups.Moreover,the addition of ASS improved the adsorption of carboxyl groups.Furthermore,the adsorption experiments and apparent viscosity measurements revealed that adding ASS dispersed the pulp well,which reduced the apparent viscosity,improved the adsorption amount of CMC on the talc surface,and enhanced the inhibition of talc in chalcopyrite flotation. 展开更多
关键词 TALC CHALCOPYRITE FLOTATION combined inhibitor apparent viscosity
下载PDF
Flotation separation of arsenopyrite from several sulphide minerals with organic depressants
6
作者 Wang Fuliang Wang Ligang Sun Chuanyao 《Engineering Sciences》 EI 2008年第4期11-16,共6页
In this paper,the separation of arsenopyrite from chalcopyrite,pyrite,galena with organic depressants (guergum and sodium humic) was discussed,and the functioning mechanism of those organic depressants was discussed. ... In this paper,the separation of arsenopyrite from chalcopyrite,pyrite,galena with organic depressants (guergum and sodium humic) was discussed,and the functioning mechanism of those organic depressants was discussed. The experimental results of monomineral flotation indicated that both guergum and sodium humic have depressing effect on arsenopyrite in the presence of ethyl xanthate. Guergum and sodium humic showed different depressing ability to pyrite,chalcopyrite and galena,and the higher the pH value in pulp,the stronger the depressing ability. Ultraviolet-Visible Spectrophotometric study showed that the adsorption layer of xanthate on surface of minerals had been desorbed by the two organic depressants,and the selective desorption of the collector layer was found from different minerals. The xanthate cover on minerals surface was set free when dosage of the organic depressants was high enough. For artificially-mixed minerals,the separation of arsenopyrite from other sulphides was successfully realized by controlling dosage of the organic depressants. And sodium humic had been used successfully to decrease arsenic content in sulphide concentrates in a commercial Lead-Zinc concentrator. 展开更多
关键词 有机抑制剂 硫化物矿物 浮选分离 毒砂 紫外可见分光光度法 腐殖酸钠 乙基黄药 腐植酸钠
下载PDF
Removal of dolomite and potassium feldspar from apatite using simultaneous flotation with a mixed cationic-anionic collector
7
作者 Haoyong Yu Yangge Zhu +2 位作者 Liang Lu Xiaoxing Hu Songqing Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期783-791,共9页
This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,s... This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,several experimental methods,including flotation experiments,zeta-potential detection,microcalorimetry detection,XPS analysis and FTIR measurements,were used.The flotation tests showed that dolomite and potassium feldspar can be successfully removed from apatite simultaneously when the molar ratio of DTAB to NaOL was 2:1 with pH 4.5.Zeta-potential and microcalorimetry detection suggested that NaOL and DTAB were adsorbed on the surface of dolomite and potassium feldspar respectively,and part of NaOL and DTAB formed co-adsorption on the surface of potassium feldspar to enhance the floatability of potassium feldspar.The XPS and FTIR spectra analysis demonstrated that the cationic collector,DTAB,was first adsorbed on the surface of potassium feldspar through electrostatic attraction in the DTAB/NaOL mixture system.Subsequently,the anionic NaOL collector and cationic DTAB collector form an electron neutralisation complex,thereby resulting in co-adsorption on the surface of potassium feldspar.NaOL was chemically reacted and adsorbed on dolomite surface,but almost no collector was adsorbed on apatite surface.Finally,the adsorption models of different collectors on mineral surface were obtained. 展开更多
关键词 FLOTATION Mixed collectors APATITE Potassium feldspar DOLOMITE
下载PDF
Flotation and adsorption of novel Gemini decyl-bishydroxamic acid on bastnaesite:Experiments and density functional theory calculations
8
作者 Longhua Xu Chang Liu +5 位作者 Jiushuai Deng Donghui Wang Kai Xue Yan Wang Jinping Meng Jiongtian Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第10期1193-1202,共10页
Rare earth element is an important strategic metal,but the supply of high purity rare earth ores is growing slowly,which is in sharp contradiction with the rapidly growing demand.Froth flotation has been confirmed to ... Rare earth element is an important strategic metal,but the supply of high purity rare earth ores is growing slowly,which is in sharp contradiction with the rapidly growing demand.Froth flotation has been confirmed to be an effective method to separate bastnaesite from its gangue minerls.However,the traditional collectors are facing serious problems in flotation separation of minerals,requiring the addition of excess depressant and regulator in the flotation process.Herein,we proposed and synthesized novel Gemini hydroxamic acids Octyl-bishydroxamic acid(OTBHA),Decyl-bishydroxamic acid(DCBHA)and Dodecyl-bishydroxamic acid(DDBHA)as the collectors in bastnaesite-barite flotation system.The effect of different carbon chain lengths on the molecular properties were explored by density functional theory(DFT)calculations.DCBHA possessed a stronger reactivity compared with OCBHA and DDBHA.The flotation results verified the consistency of the computational calculation about the performance prediction of Gemini hydroxamic acids.Compared with OCBHA and DDBHA,DCBHA displayed superior collecting affinity toward bastnaesite,and did not float barite.Zeta potential results showed that the presence of DCBHA increased the potential of bastnaesite,while it had almost no effect on barite,indicating DCBHA had a stronger affinity for bastnaesite.Then,Fourier transform infrared(FTIR)and X-ray photoelectron spectroscopy(XPS)analyses indicated that the adsorption mechanism was due to two hydroxamate groups of DCBHA co-anchored on bastnaesite surface by forming five-membered hydroxamic―(O―O)―Ce complexes.In addition,atomic force microscopy(AFM)clearly observed that DCBHA uniformly aggregated on bastnaesite surface,which increased surface contact angle and improved the hydrophobicity of bastnaesite. 展开更多
关键词 Gemini-hydroxamic acid BASTNAESITE DFT FLOTATION Adsorption mechanism
下载PDF
Simultaneously removal of P and B from Si by Sr and Zr co-addition during Al–Si low-temperature solvent refining
9
作者 Chen Chen Jingwei Li +2 位作者 Qiuxia Zuo Boyuan Ban Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期365-377,共13页
To remove the key impurity elements,P and B,from primary Si simultaneously,Sr and Zr co-addition to Al-Si alloy systems during solvent refining has been investigated.Sr reacts with Al,Si,and P in the melt to form a P-... To remove the key impurity elements,P and B,from primary Si simultaneously,Sr and Zr co-addition to Al-Si alloy systems during solvent refining has been investigated.Sr reacts with Al,Si,and P in the melt to form a P-containing Al_(2)Si_(2)Sr phase and Zr reacts with B to form a ZrB_(2) phase.In the Al-Si-Sr-Zr system,high removal fractions of P and B in the primary Si,with 84.8%-98.4%and 90.7%-96.7%,respectively,are achieved at the same time,respectively.The best removal effect is obtained in the sample with the addition of Sr-32000+Zr-3000μg·kg^(-1),and the removal fractions of P and B in the purified Si reach 98.4%and 96.1%.Compared with the Sr/Zr single-addition,the removal effects of Sr and Zr co-addition on P and B do not show a significant downward trend,indicating that the nucleation and growth of the B/P-containing impurity phases are mutually independent.Finally,an evolution model is proposed to describe the nucleation and the growth stages of Sr/Zr-containing compound phases,which reveals the interaction between the impurity phases and the primary Si. 展开更多
关键词 Al2Si2Sr phase zirconium boride phase phase directional solidification solvent refining
下载PDF
Effect of sodium alginate on reverse flotation of hematite and its mechanism 被引量:10
10
作者 Ya-feng Fu Wan-zhong Yin +3 位作者 Bin Yang Chuang Li Zhang-lei Zhu Dong Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第10期1113-1122,共10页
Given the gradual increase in the chlorite content of hematite ores, pulp properties seriously deteriorate during flotation. The traditional anion reverse flotation of hematite cannot effectively eliminate the effects... Given the gradual increase in the chlorite content of hematite ores, pulp properties seriously deteriorate during flotation. The traditional anion reverse flotation of hematite cannot effectively eliminate the effects of chlorite, leading to a significant decrease in the total Fe(TFe) grade of the concentrate. In this work, the effect of sodium alginate on the reverse flotation of hematite was systematically investigated. Flotation tests of artificially mixed ores were conducted, and the results showed that sodium alginate can significantly improve the removal rates of quartz and chlorite. The adsorption measurements, infrared spectroscopy, and contact angle tests demonstrated that sodium alginate adsorbs on the quartz surface by chelating with calcium ions, thereby weakening the steric hindrance of oleate ions and increasing the adsorption capacity of sodium oleate to ultimately improve the removal rate of quartz. Furthermore, owing to its lower density and fine particle size, chlorite is easily entrained into the foam layer. Sodium alginate dramatically increases the liquid-to-gas ratio of the foam layer by increasing pulp viscosity, thereby increasing the entrainment rate of chlorite and finally improving its removal rate. The core content of this thesis bears significance in improving the Fe grade in the reverse flotation of chlorite-containing hematite. 展开更多
关键词 HEMATITE REVERSE FLOTATION sodium ALGINATE PULP viscosity ENTRAINMENT rate
下载PDF
Selective flotation separation of andalusite and quartz and its mechanism 被引量:6
11
作者 Yan-ping Niu Chuan-yao Sun +3 位作者 Wan-zhong Yin Xing-rong Zhang Hong-feng Xu Xu Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第9期1059-1068,共10页
The separation of andalusite and quartz was investigated in the sodium oleate flotation system, and its mechanism was studied by solution chemical calculation, zeta-potential tests, Fourier transform infrared spectros... The separation of andalusite and quartz was investigated in the sodium oleate flotation system, and its mechanism was studied by solution chemical calculation, zeta-potential tests, Fourier transform infrared spectroscopic(FTIR), and X-ray photoelectron spectroscopic(XPS). The flotation tests results show that FeCl3·6H2O has a strong activation effect on andalusite and quartz and citric acid has a strong inhibitory effect on activated quartz, thus increasing the floatability difference between quartz and andalusite when the pulp p H is approximately 8. The FTIR, Zeta potential, and XPS analyses combined with the chemical calculation of flotation reagent solutions demonstrate that Fe forms hydroxide precipitates on the surface of andalusite and quartz and that oleate anions and metal ions adsorb onto the surface of the minerals. The elements Al and Fe can be chemically reacted. The anions in citric acid have different degrees of dissolution of Fe on the andalusite and quartz surfaces, thereby selectively eliminating the activation of the elemental Fe on andalusite and quartz and increasing the floatability of andalusite, leading to a better separation effect between andalusite and quartz. 展开更多
关键词 ANDALUSITE QUARTZ flotation MECHANISM zeta potential Fourier infrared SPECTRUM ANALYSIS X-ray PHOTOELECTRON energy SPECTRUM ANALYSIS
下载PDF
Studies of benzyl hydroxamic acid/calcium lignosulphonate addition order in the flotation separation of smithsonite from calcite 被引量:3
12
作者 Cheng Liu Yuhua Zhu +2 位作者 Kaihua Huang Siyuan Yang Zhian Liang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第6期1153-1158,共6页
Flotation separation of smithsonite from calcite is difficult due to their similar surface properties.In the present study,a reagent scheme of depressant calcium lignosulphonate(CLS) and collector benzyl hydroxamic ac... Flotation separation of smithsonite from calcite is difficult due to their similar surface properties.In the present study,a reagent scheme of depressant calcium lignosulphonate(CLS) and collector benzyl hydroxamic acid(BHA) was introduced in the flotation of smithsonite from calcite.Microflotation tests revealed that the efficient flotation of smithsonite from calcite could only be obtained with the addition order of BHA before CLS,which was opposite to the widely-used order that adding depressant prior to the collector.The zeta potential measurements indicated that BHA selectively adsorbed onto smithsonite surface,then not allowed the CLS adsorption onto the smithsonite surface rather than calcite surface because of the steric hindrance,thereby the smithsonite surface remained hydrophobic while calcite surface became more hydrophilic after the addition of CLS.As a result,the calcite flotation was completely depressed while the smithsonite flotation recovery was still in high value,leading to the optimal flotation separation performance. 展开更多
关键词 SMITHSONITE CALCITE Benzyl hydroxamic acid Calcium lignosulphonate Flotation separation
下载PDF
Research on new beneficiation process of low-grade magnesite using vertical roller mill 被引量:2
13
作者 Chuang Li Chuan-yao Sun +3 位作者 Yu-lian Wang Ya-feng Fu Peng-yun Xu Wan-zhong Yin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第4期432-442,共11页
We investigated whether the vertical roller mill can be efficiently used in the beneficiation of low-grade magnesite and whether it can improve upon the separation indices achieved by the ball mill.We conducted experi... We investigated whether the vertical roller mill can be efficiently used in the beneficiation of low-grade magnesite and whether it can improve upon the separation indices achieved by the ball mill.We conducted experiments involving the reverse flotation and positive flotation of low-grade magnesite to determine the optimum process parameters,and then performed closed-circuit beneficiation experiments using the vertical roller mill and ball mill.The results show that the optimum process parameters for the vertical roller mill are as follows:a grinding fineness of 81.6wt%of particles less than 0.074 mm,a dodecyl amine(DDA)dosage in magnesite reverse flotation of 100 g·t?1,and dosages of Na2CO3,(NaPO3)6,and NaOL in the positive flotation section of 1000,100,and 1000 g·t?1,respectively.Compared with the ball mill,the use of the vertical roller mill in the beneficiation of low-grade magnesite resulted in a 1.28%increase in the concentrate grade of MgO and a 5.88%increase in the recovery of MgO.The results of our causation mechanism analysis show that a higher specific surface area and greater surface roughness are the main reasons for the better flotation performance of particles ground by the vertical roller mill in the beneficiation of lowgrade magnesite. 展开更多
关键词 LOW-GRADE MAGNESITE vertical roller MILL reverse FLOTATION positive FLOTATION NEW BENEFICIATION process
下载PDF
Exploration of amino trimethylene phosphonic acid to eliminate the adverse effect of seawater in molybdenite flotation 被引量:2
14
作者 Guanghua Ai Kaihua Huang +1 位作者 Cheng Liu Siyuan Yang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第6期1129-1134,共6页
In this investigation,a chelating agent of amino trimethylene phosphonic acid(ATMP) was introduced to eliminate the adverse effect of seawater in molybdenite flotation.Microflotation results presented that high flotat... In this investigation,a chelating agent of amino trimethylene phosphonic acid(ATMP) was introduced to eliminate the adverse effect of seawater in molybdenite flotation.Microflotation results presented that high flotation recovery of molybdenite was achieved in freshwater using kerosene as the collector,but it was significantly decreased in the presence of seawater when pH> 9.5.Among the main ions in seawater,magnesium and calcium ions played a more detrimental role than others.After the addition of ATMP,molybdenite floatability can restore in seawater.Zeta potential distribution and solution chemistry calculation results illustrated that the decreased molybdenite floatability was attributed to the interaction of positive Mg(OH)_(2)(s)(major) and CaOH^(+)(minor) components with the molybdenite surface.The magnesium/calcium ions of positive components of Mg(OH)_(2)(s) and CaOH^(+) interacted with the ionized species of ATMP and then produced ATMP-calcium/magnesium complex,leading to the electrostatic repulsion between molybdenite and ATMP-calcium/magnesium complex that was restoring the molybdenite flotation.Hence,the ATMP can be utilized as an appropriate reagent to improve molybdenite flotation in seawater. 展开更多
关键词 MOLYBDENITE Seawater Calcium/magnesium ions ATMP FLOTATION
下载PDF
Correlation between aggregation structure and tailing mineral crystallinity 被引量:2
15
作者 Wen-tao Hu Xin-wei Li +2 位作者 Hua-jun Wang Chuan-yao Sun Xu-qin Duan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第9期845-850,共6页
Direct reduction is an emerging technology for the utilization of refractory iron ore. With this technology, iron oxides in the ore can be reduced to recoverable elemental iron. The structure of granular aggregates in... Direct reduction is an emerging technology for the utilization of refractory iron ore. With this technology, iron oxides in the ore can be reduced to recoverable elemental iron. The structure of granular aggregates in direct reduction products was investigated by X-ray diffraction (XRD). The results show that iron is mainly generated as a shell in the outer edge of the aggregates. The thermal conductivity of the iron shell is higher than that of other minerals. Thus, minerals close to the iron shell cool faster than those in the inner shells and do not crystallize well. These minerals mainly become stage 2 tailings. Hence the XRD intensity of stage 2 tailings is lower than that of stage 1 tailhags. When iron is mainly generated in the interior of the aggregates, the crystallinity of stage 2 tailings will be higher than that of stage 1 tailings. This indicates that the crystallinity of tailings can be used as a marker for the aggregate structure. 展开更多
关键词 iron ore reduction AGGREGATION CRYSTALLINITY railings
下载PDF
New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior 被引量:3
16
作者 Ya-feng Fu Wan-zhong Yin +6 位作者 Xian-shu Dong Chuan-yao Sun Bin Yang Jin Yao Hong-liang Li Chuang Li Hyunjung Kim 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第12期1898-1907,共10页
The inadvertent dissolution of gangue minerals is frequently detrimental to the flotation of valuable minerals.We investigated the effect of conditioning time on the separation of brucite and serpentine by flotation.B... The inadvertent dissolution of gangue minerals is frequently detrimental to the flotation of valuable minerals.We investigated the effect of conditioning time on the separation of brucite and serpentine by flotation.By analyzing the Mg2+concentration,relative element content,and pulp viscosity,we studied the effect of mineral dissolution on brucite flotation.The results of artificially mixed mineral flotation tests(with-10μm serpentine)showed that by extending the conditioning time from 60 to 360 s,a large amount of Mg2+on the mineral surface gradually dissolved into the pulp,resulting in a decreased brucite recovery(from 83.83%to 76.79%)and an increased recovery of serpentine from 52.12%to 64.03%.To analyze the agglomeration behavior of brucite and serpentine,we used scanning electron microscopy,which clearly showed the different adhesion behaviors of different conditioning times.Lastly,the total interaction energy,as determined based on the extended DLVO(Derjaguin-Landau-Verwey-Overbeek)theory,also supports the conclusion that the gravitational force between brucite and serpentine increases significantly with increased conditioning time. 展开更多
关键词 behavior INSIGHT viscosity
下载PDF
Adsorption behavior and mechanism of copper ions in the sulfidization flotation of malachite 被引量:2
17
作者 Han Wang Shuming Wen +2 位作者 Guang Han Yongxin He Qicheng Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期897-906,共10页
Malachite is one of the main minerals used for the industrial enrichment and recovery of copper oxide resources, and copper ions are unavoidable metal ions in the flotation pulp. The microflotation, contact angle, and... Malachite is one of the main minerals used for the industrial enrichment and recovery of copper oxide resources, and copper ions are unavoidable metal ions in the flotation pulp. The microflotation, contact angle, and adsorption experiments indicated that pretreatment with an appropriate concentration of copper ions could improve the malachite recovery, and the addition of excess copper ions reduced the hydrophobicity of the malachite surface. The results of zeta potential tests indicated that sodium sulfide and butyl xanthate were also adsorbed on the surface of malachite pretreated with copper ions. X-ray photoelectron spectroscopy(XPS) results indicated that —Cu—O and —Cu—OH bonds were formed on the surface of the samples. After pretreatment with an appropriate concentration of copper ions, the number of —OH groups on the mineral surface decreased, whereas the number of Cu—S groups on the mineral surface increased, which was conducive to the sulfidization of malachite. After adding a high concentration of copper ions, the —OH groups on the mineral surface increased, whereas the number of Cu—S groups decreased, which had an adverse effect on the sulfidization flotation of malachite. Time-of-flight secondary ion mass spectrometry showed that pretreatment with copper ions resulted in a thicker sulfidization layer on the mineral surface. 展开更多
关键词 MALACHITE Sulfidization flotation Copper ions ADSORPTION
下载PDF
Growth behavior of the magnetite phase in the reduction of hematite via a fluidized bed
18
作者 Jian-wen Yu Yue-xin Han +1 位作者 Yan-jun Li Peng Gao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第10期1231-1238,共8页
To understand the formation and growth mechanism of the magnetite phase during the fluidized reduction of hematite, a high-purity hematite ore was isothermally reduced using a 20vol% CO 80vol% CO2 gas mixture in a mic... To understand the formation and growth mechanism of the magnetite phase during the fluidized reduction of hematite, a high-purity hematite ore was isothermally reduced using a 20vol% CO 80vol% CO2 gas mixture in a micro-fluidized bed to examine the process of the selective conversion of hematite to magnetite. The micro-structural characteristics of the magnetite phase were investigated using scanning electron microscopy (SEM) and the Brunauer, Emmett, and Teller (BET) method, and the thickness of the magnetite layer was measured and evaluated using statistical analysis. The experimental results showed that the fresh magnetite nuclei were dense needles of different lengths, and the original hematite grains became porous after complete reduction to the magnetite phase. The thickness of the mag- netite layer increased with an increase in reduction temperature and reduction time. The growth kinetics of the magnetite layer was investi- gated, and the value of the activation energy E was estimated to be 28.33 kJ/mol. 展开更多
关键词 HEMATITE ore fluidized bed suspension MAGNETIZATION ROASTING MAGNETITE GROWTH kinetics
下载PDF
Interaction of magnetic spheres in magnetic fields from the view of magnetic energy density:A 3D finite element analysis(FEA)
19
作者 Jiangang Ku Zhongyun Lei +3 位作者 Hua Lin Quanxiang Yan Huihuang Chen Bao Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1341-1350,共10页
Magnetic interaction between magnetic particles is of great significance in the fields of magnetic separation and functional materials.A good understanding of interaction mechanism of magnetic particles would further ... Magnetic interaction between magnetic particles is of great significance in the fields of magnetic separation and functional materials.A good understanding of interaction mechanism of magnetic particles would further boost its promising industrial applications.We hereby present our work which visualizes the movement behavior of magnetic spheres in magnetic fields employing high-speed imaging and simulates the dynamic behavior of spheres using an Arbitrary Lagrangian-Eulerian(ALE)based on finite element method.In this paper,we investigated the stress tensor,magnetic force,and dynamic behavior of magnetic spheres in magnetic fields,especially magnetic energy density in different domains.Results show that there are four relatively independent regions of magnetic energy density distribution in external spatial domains of a single sphere system.Attractive force will generate when the energy density in the spatial region between two spheres is relatively high,while a repulsive force will generate when the energy density in the spatial region between two spheres is relatively low.Every magnetic sphere spontaneously moves towards the region with high energy density and stays away from the region with low energy density.The total magnetic energy in magnetic spheres’domains(V_(1))and external spatial domains(V_(2))increases,but the magnetic energy in the external spatial domain decreases over time during the aggregation process.The magnetic spheres ultimately arrange in chain-like structures oriented along magnetic field direction.We hereby proposed a novel and efficient approach to predict the movement trends and final state of magnetic particle swarm from the view of energy density. 展开更多
关键词 Magnetic force Stress tensor Magnetic spheres INTERACTION 3D FEA
下载PDF
Depression behaviors of N-thiourea-maleamic acid and its adsorption mechanism on galena in Mo-Pb flotation separation
20
作者 Liang Lu Wei Xiong +2 位作者 Yangge Zhu Xingrong Zhang Yongxing Zheng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第1期181-189,共9页
In present study,a novel organic depressant N-thiourea-maleamic acid(TMA)was synthesized and applied as a galena depressant in the flotation separation of Mo-Pb ores.The depression behaviors of TMA were tested through... In present study,a novel organic depressant N-thiourea-maleamic acid(TMA)was synthesized and applied as a galena depressant in the flotation separation of Mo-Pb ores.The depression behaviors of TMA were tested through flotation experiments.A wider separation window for single minerals over 90.0%was obtained at 30.0 mg/L TMA,confirming that TMA could depress galena significantly,while effected molybdenite floatability slightly.An effective separation was obtained for artificially mixed minerals and actual Mo-Pb ores.The adsorption mechanism on galena was revealed by UV-Vis spectra,zeta potential tests,Fourier transform infrared spectroscopy(FT-IR)analysis,contact angle tests and X-ray photoelectron spectroscopy(XPS)analysis.The zeta potentials of galena became more negative and the contact angle of galena dropped from initial 74.36°to 57.8°with 30.0 mg/L TMA depressant,inferring that TMA had adsorbed on galena surface.The analysis results of UV-Vis spectra,FT-IR and XPS gave further evidence that TMA might chemisorb on galena surface via Pb sites on galena surface and the thiourea group in TMA molecular structure,while the carboxyl group played a role of hydrophilicity. 展开更多
关键词 MOLYBDENITE GALENA TMA Separation Adsorption
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部