Doppler optical coherence tomography or optical Doppler tomography (ODT) has been demonstrated to spatially localize flow velocity mapping as well as to obtain images of microstructure of samples simulta- neously. I...Doppler optical coherence tomography or optical Doppler tomography (ODT) has been demonstrated to spatially localize flow velocity mapping as well as to obtain images of microstructure of samples simulta- neously. In recent decades, spectral domain Doppler optical coherence tomography (OCT) has been applied to observe three-dimensional (3D) vascular distribution. In this study, we developed a spectral domain optical coherence tomography system (SD-OCT) using super luminescent diode (SLD) as light source. The center wavelength of SLD is 835 nm with a 45-nm bandwidth. Theoretically, the transverse resolution, axial resolution and penetration depth of this SD-OCT system are 6.13 μm, 6.84 μm and 3.62 mm, respectively. By imaging mouse model with dorsal skin window chamber, we obtained a series of real-time OCT images and reconstructed 3D images of the specific area inside the dorsal skin window chamber by Amira. As a result, we can obtain the clear and complex distribution images of blood vessels of mouse model.展开更多
Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D p...Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D printing of glass,an important optoelectronic material,including fused deposition modeling,selective laser sintering/melting,stereolithography(SLA)and direct ink writing.We compare these 3D printing methods and analyze their benefits and problems for the manufacturing of functional glass objects.In addition,we discuss the technological principles of 3D glass printing and applications of 3D printed glass objects.This review is finalized by a summary of the current achievements and perspectives for the future development of the 3D glass printing technique.展开更多
The spectral phase of the femtosecond laser field is an important parameter that affects the up-conversion(UC)luminescence efficiency of dopant lanthanide ions.In this work,we report an experi-mental study on controll...The spectral phase of the femtosecond laser field is an important parameter that affects the up-conversion(UC)luminescence efficiency of dopant lanthanide ions.In this work,we report an experi-mental study on controlling the UC lmiiinescence efficiency in Sm^3+:NaYF4 glass by 800-nm femtosec-ond laser pulse shaping using spectral phase modulation.The optimal phase control strategy efficiently enhances or suppresses the UC luminescence intensity.Based on the laser-power dependence of the UC luminescence intensity and its comparison with the luminescence spectrum under direct 266-nm fem-tosecond lciser irradiation,we propose herein an excitation model combining non-resonant two-photon absorption with resonance-media ted three-photon absorption to explain the experimental observations.展开更多
This paper reports a synthesis of zinc oxide (ZnO) nanosheets by hydrothermal method. ZnO nanosheets on Al substrate were generated by hydrothermal synthesis with zinc nitrate hexahydrate (Zn(NO3)2· 6H2O) a...This paper reports a synthesis of zinc oxide (ZnO) nanosheets by hydrothermal method. ZnO nanosheets on Al substrate were generated by hydrothermal synthesis with zinc nitrate hexahydrate (Zn(NO3)2· 6H2O) and hexamethylenetetramine (HMT) as a research system, which were controlled conditions of the reaction. The energy dispersive spectroscopy (EDS), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images were achieved to determine the characterization of ZnO nanosheets. The diameter of ZnO nanofilm was from 0.5 to 1 μm, and its thickness ranged from 30 to 50 nm.展开更多
Disorder and localization have dramatic influence on the topological properties of a quantum system.While strong disorder can close the band gap thus depriving topological materials of topological features,disorder ma...Disorder and localization have dramatic influence on the topological properties of a quantum system.While strong disorder can close the band gap thus depriving topological materials of topological features,disorder may also induce topology from trivial band structures,wherein topological invariants are shared by completely localized states.Here we experimentally investigate a fundamentally distinct scenario where topology is identified in a critically localized regime,with eigenstates neither fully extended nor completely localized.Adopting the technique of momentum-lattice engineering for ultracold atoms,we implement a one-dimensional,generalized Aubry-Andrémodel with both diagonal and off-diagonal quasi-periodic disorder in momentum space,and characterize its localization and topological properties through dynamic observables.We then demonstrate the impact of interactions on the critically localized topological state,as a first experimental endeavor toward the clarification of many-body critical phase,the critical analogue of the many-body localized state.展开更多
The tightly focused field of an incident light beam through cubic phase modulation has been investigated by vectorial diffraction theory.For different modulation index of cubic phase and polarization states of the inc...The tightly focused field of an incident light beam through cubic phase modulation has been investigated by vectorial diffraction theory.For different modulation index of cubic phase and polarization states of the incident light,the focused fields have been presented.The results show that the Airy-like field can be produced by cubic phase modulation under high numerical aperture(NA)optical system.Intensity pattern and length of the main lobe are depended on modulation index for the spatial uniform polarization,and the Airy-like field is affected by polarization state for the spatial nonuniform polarization.It is helpful to structure new optical fields in optical manipulation,optical imaging,and surface plasma controlling.展开更多
This paper reviews our recent work on fabrication, optical characterization and lasing application of semiconductor nanowires, with brief introduction of related work from many other groups.
A hybrid plasmonic waveguide containing silicon core, silver cap and ultra-thin sandwiched SiO2 layer is studied. By analyzing the mode distribution patterns and the curves of mode effective index, we show how the pla...A hybrid plasmonic waveguide containing silicon core, silver cap and ultra-thin sandwiched SiO2 layer is studied. By analyzing the mode distribution patterns and the curves of mode effective index, we show how the plasmonic mode around the metal surface is coupled with the fundamental mode in the silicon core to form a squeezed hybrid mode. The ability of the hybrid plasmonic waveguide in energy confinement is also discussed quantitatively.展开更多
Novel xanthenoid dyes by replacing the central oxygen atom of the xanthene dyes with less electronrich bridging groups have been intensively sought after primarily for their long spectral wavelengths.However, the new ...Novel xanthenoid dyes by replacing the central oxygen atom of the xanthene dyes with less electronrich bridging groups have been intensively sought after primarily for their long spectral wavelengths.However, the new scaffolds are likely prone to nucleophilic attack at their central methane carbon, as the result of the reduced electron density of the fluorochromic scaffolds. We envisage that the bridging group may be harnessed to sterically shield the central methane carbon from incoming nucleophiles and render high stability and synthesized xantheno-xanthene dyes. Additionally, the xantheno-bridging group can be modified via electrophilic aromatic substitution to introduce functionalities, e.g., sulfonate groups.展开更多
Nondestructive cryogenically thermal cycling has been a simple but effective treatment to enhance mechanical properties of glassy materials.However,how the structural heterogeneities on nanometer scales are affected b...Nondestructive cryogenically thermal cycling has been a simple but effective treatment to enhance mechanical properties of glassy materials.However,how the structural heterogeneities on nanometer scales are affected by thermal cycling is still an issue.Here,we report the response of spatial heterogeneities in three selected Ti_(41)Zr_(25)Be_(28)Fe_(6),Zr_(56)Co_(14)Cu_(14)Al_(16)and Zr_(42)Y_(14)Co_(22)Al_(22)(at.%)metallic glasses(MGs)with different compositions to the thermal cycling,which show significantly different structure and properties after the same treatments and could be ascribed to the joint contribution of relaxation and rejuvenation induced by thermal cycling.The rejuvenation is initially prevailed in a Zr-Y-containing MG,whereas the relaxation is dominant in a Cu-Co-containing MG,both eventually entering into a dynamic equilibrium state.By employing nanometer-scale structural models,the intrinsic correlation between the spatial heterogeneity and thermal cycling is proposed.The discovery could provide the fundamental understanding of the role of spatial heterogeneity in influencing the macroscopic properties of MGs via thermal cycling and help design high-performance glassy materials by tailoring their atomic structures with suitable thermal treatments.展开更多
文摘Doppler optical coherence tomography or optical Doppler tomography (ODT) has been demonstrated to spatially localize flow velocity mapping as well as to obtain images of microstructure of samples simulta- neously. In recent decades, spectral domain Doppler optical coherence tomography (OCT) has been applied to observe three-dimensional (3D) vascular distribution. In this study, we developed a spectral domain optical coherence tomography system (SD-OCT) using super luminescent diode (SLD) as light source. The center wavelength of SLD is 835 nm with a 45-nm bandwidth. Theoretically, the transverse resolution, axial resolution and penetration depth of this SD-OCT system are 6.13 μm, 6.84 μm and 3.62 mm, respectively. By imaging mouse model with dorsal skin window chamber, we obtained a series of real-time OCT images and reconstructed 3D images of the specific area inside the dorsal skin window chamber by Amira. As a result, we can obtain the clear and complex distribution images of blood vessels of mouse model.
基金This work was financially supported by the National Key R&D Program of China(No.2018YFB1107200)the National Natural Science Foundation of China(Grant No.51772270)+1 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2018-WNLOKF005)State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences.
文摘Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D printing of glass,an important optoelectronic material,including fused deposition modeling,selective laser sintering/melting,stereolithography(SLA)and direct ink writing.We compare these 3D printing methods and analyze their benefits and problems for the manufacturing of functional glass objects.In addition,we discuss the technological principles of 3D glass printing and applications of 3D printed glass objects.This review is finalized by a summary of the current achievements and perspectives for the future development of the 3D glass printing technique.
基金the Na-tional Natural Science Foundation of China(Grant Nos.91850202,11774094,11727810,11804097,and 61720106009)the Science and Technology Commission of Shanghai Municipality(Grant No.17ZR146900)+1 种基金the China Postdoctoral Science Foundation(Grant No.2018M641958)ECNU Academic Innovation Promotion Program for Excellent Doctoral Students(Grant No.YBNLTS2019-011).
文摘The spectral phase of the femtosecond laser field is an important parameter that affects the up-conversion(UC)luminescence efficiency of dopant lanthanide ions.In this work,we report an experi-mental study on controlling the UC lmiiinescence efficiency in Sm^3+:NaYF4 glass by 800-nm femtosec-ond laser pulse shaping using spectral phase modulation.The optimal phase control strategy efficiently enhances or suppresses the UC luminescence intensity.Based on the laser-power dependence of the UC luminescence intensity and its comparison with the luminescence spectrum under direct 266-nm fem-tosecond lciser irradiation,we propose herein an excitation model combining non-resonant two-photon absorption with resonance-media ted three-photon absorption to explain the experimental observations.
文摘This paper reports a synthesis of zinc oxide (ZnO) nanosheets by hydrothermal method. ZnO nanosheets on Al substrate were generated by hydrothermal synthesis with zinc nitrate hexahydrate (Zn(NO3)2· 6H2O) and hexamethylenetetramine (HMT) as a research system, which were controlled conditions of the reaction. The energy dispersive spectroscopy (EDS), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images were achieved to determine the characterization of ZnO nanosheets. The diameter of ZnO nanofilm was from 0.5 to 1 μm, and its thickness ranged from 30 to 50 nm.
基金the National Key Research and Development Program of China(2018YFA0307200,2016YFA0301700 and 2017YFA0304100)the National Natural Science Foundation of China(12074337 and 11974331)+2 种基金Natural Science Foundation of Zhejiang Province(LR21A040002 and LZ18A040001)Zhejiang Provincial Plan for Science and Technology(2020C01019)the Fundamental Research Funds for the Central Universities(2020XZZX002-05 and 2021FZZX001-02)。
文摘Disorder and localization have dramatic influence on the topological properties of a quantum system.While strong disorder can close the band gap thus depriving topological materials of topological features,disorder may also induce topology from trivial band structures,wherein topological invariants are shared by completely localized states.Here we experimentally investigate a fundamentally distinct scenario where topology is identified in a critically localized regime,with eigenstates neither fully extended nor completely localized.Adopting the technique of momentum-lattice engineering for ultracold atoms,we implement a one-dimensional,generalized Aubry-Andrémodel with both diagonal and off-diagonal quasi-periodic disorder in momentum space,and characterize its localization and topological properties through dynamic observables.We then demonstrate the impact of interactions on the critically localized topological state,as a first experimental endeavor toward the clarification of many-body critical phase,the critical analogue of the many-body localized state.
基金This work was supported in part by the National Key Research and Development Program of China(Nos.2017YFC0110303 and 2016YFF0101400)the National Basic Research Program of China(973 Program)(No.2015CB352003)+2 种基金the Natural Science Foundation of Zhejiang province(No.LR16F050001)the Fundamental Research Funds for the Central Universities(No.2017FZA5004)and the Natural Science Foundation of Shanghai(No.16ZR1412900).
文摘The tightly focused field of an incident light beam through cubic phase modulation has been investigated by vectorial diffraction theory.For different modulation index of cubic phase and polarization states of the incident light,the focused fields have been presented.The results show that the Airy-like field can be produced by cubic phase modulation under high numerical aperture(NA)optical system.Intensity pattern and length of the main lobe are depended on modulation index for the spatial uniform polarization,and the Airy-like field is affected by polarization state for the spatial nonuniform polarization.It is helpful to structure new optical fields in optical manipulation,optical imaging,and surface plasma controlling.
文摘This paper reviews our recent work on fabrication, optical characterization and lasing application of semiconductor nanowires, with brief introduction of related work from many other groups.
基金Acknowledgements This work was supported partially by the National Natural Science Foundation of China (Grant Nos. 61178062 and 61108022).
文摘A hybrid plasmonic waveguide containing silicon core, silver cap and ultra-thin sandwiched SiO2 layer is studied. By analyzing the mode distribution patterns and the curves of mode effective index, we show how the plasmonic mode around the metal surface is coupled with the fundamental mode in the silicon core to form a squeezed hybrid mode. The ability of the hybrid plasmonic waveguide in energy confinement is also discussed quantitatively.
基金financially supported by the National Natural Science Foundation of China (Nos. 21822805, 21908065, 22078098)the Science and Technology Commission of Shanghai Municipality for the Shanghai International Cooperation Program (No. 18430711000)the China Postdoctoral Science Foundation (Nos. 2019M651427, 2020T130197)。
文摘Novel xanthenoid dyes by replacing the central oxygen atom of the xanthene dyes with less electronrich bridging groups have been intensively sought after primarily for their long spectral wavelengths.However, the new scaffolds are likely prone to nucleophilic attack at their central methane carbon, as the result of the reduced electron density of the fluorochromic scaffolds. We envisage that the bridging group may be harnessed to sterically shield the central methane carbon from incoming nucleophiles and render high stability and synthesized xantheno-xanthene dyes. Additionally, the xantheno-bridging group can be modified via electrophilic aromatic substitution to introduce functionalities, e.g., sulfonate groups.
基金the National Natural Science Foundation of China(Nos.U1832203,11975202,51671169,and 51671170)the National Key Research and Development Program of China(Nos.2016YFB0701203,2016YFB0700201 and 2017YFA0403400)+1 种基金the Natural Science Foundation of Zhejiang Province(Nos.LZ20E010002,Z1110196 and Y4110192)the Fundamental Research Funds for the Central Universities。
文摘Nondestructive cryogenically thermal cycling has been a simple but effective treatment to enhance mechanical properties of glassy materials.However,how the structural heterogeneities on nanometer scales are affected by thermal cycling is still an issue.Here,we report the response of spatial heterogeneities in three selected Ti_(41)Zr_(25)Be_(28)Fe_(6),Zr_(56)Co_(14)Cu_(14)Al_(16)and Zr_(42)Y_(14)Co_(22)Al_(22)(at.%)metallic glasses(MGs)with different compositions to the thermal cycling,which show significantly different structure and properties after the same treatments and could be ascribed to the joint contribution of relaxation and rejuvenation induced by thermal cycling.The rejuvenation is initially prevailed in a Zr-Y-containing MG,whereas the relaxation is dominant in a Cu-Co-containing MG,both eventually entering into a dynamic equilibrium state.By employing nanometer-scale structural models,the intrinsic correlation between the spatial heterogeneity and thermal cycling is proposed.The discovery could provide the fundamental understanding of the role of spatial heterogeneity in influencing the macroscopic properties of MGs via thermal cycling and help design high-performance glassy materials by tailoring their atomic structures with suitable thermal treatments.