期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Features and genesis of Paleogene high-quality reservoirs in lacustrine mixed siliciclastic–carbonate sediments, central Bohai Sea, China 被引量:5
1
作者 Zheng-Xiang Lu Shun-Li Zhang +3 位作者 Chao Yin Hai-Long Meng Xiu-Zhang Song Jian Zhang 《Petroleum Science》 SCIE CAS CSCD 2017年第1期50-60,共11页
The characteristics and formation mechanisms of the mixed siliciclastic-carbonate reservoirs of the Paleogene Shahejie Formation in the central Bohai Sea were examined based on polarized light microscopy and scanning ... The characteristics and formation mechanisms of the mixed siliciclastic-carbonate reservoirs of the Paleogene Shahejie Formation in the central Bohai Sea were examined based on polarized light microscopy and scanning electron microscopy observations, X-ray diffrac- tometry, carbon and oxygen stable isotope geochemistry, and integrated fluid inclusion analysis. High-quality reservoirs are mainly distributed in Type I and Type II mixed siliciclastic-carbonate sediments, and the dominant pore types include residual primary intergranular pores and intrafossil pores, feldspar dissolution pores mainly devel- oped in Type II sediments. Type I mixed sediments are characterized by precipitation of early pore-lining dolo- mite, relatively weak mechanical compaction during deep burial, and the occurrence of abundant oil inclusions in high-quality reservoirs. Microfacies played a critical role in the formation of the mixed reservoirs, and high-quality reservoirs are commonly found in high-energy environ- ments, such as fan delta underwater distributary channels, mouth bars, and submarine uplift beach bars. Abundant intrafossil pores were formed by bioclastic decay, and secondary pores due to feldspar dissolution further enhance reservoir porosity. Mechanical compaction was inhibited by the precipitation of pore-lining dolomite formed during early stage, and oil emplacement has further led to the preservation of good reservoir quality. 展开更多
关键词 High-quality reservoirs Mixed sediments Paleogene Bohai Sea
下载PDF
Diagenetic fluid evolution and water-rock interaction model of carbonate cements in sandstone: An example from the reservoir sandstone of the Fourth Member of the Xujiahe Formation of the Xiaoquan-Fenggu area, Sichuan Province, China 被引量:14
2
作者 LIU SiBing HUANG SiJing +2 位作者 SHEN ZhongMin Lü ZhengXiang SONG RongCai 《Science China Earth Sciences》 SCIE EI CAS 2014年第5期1077-1092,共16页
Carbonate cement is the most abundant cement type in the Fourth Member of the Xujiahe Formation in the Xiaoquan-Fenggu area of the West Sichuan Depression. Here we use a systematic analysis of carbonate cement petrolo... Carbonate cement is the most abundant cement type in the Fourth Member of the Xujiahe Formation in the Xiaoquan-Fenggu area of the West Sichuan Depression. Here we use a systematic analysis of carbonate cement petrology, mineralogy, carbon and oxygen isotope ratios and enclosure homogenization temperatures to study the precipitation mechanism, pore fluid evolution, and distribution of different types of carbonate cement in reservoir sand in the study area. Crystalline calcite has relatively heavy carbon and oxygen isotope ratios(δ13C = 2.14‰, δ18O = -5.77‰), and was precipitated early. It was precipitated directly from supersaturated alkaline fluid under normal temperature and pressure conditions. At the time of precipitation, the fluid oxygen isotope ratio was very light, mainly showing the characteristics of a mixed meteoric water-seawater fluid(δ18O = -3‰), which shows that the fluid during precipitation was influenced by both meteoric water and seawater. The calcite cement that fills in the secondary pores has relatively lighter carbon and oxygen isotope ratios(δ13C = -2.36‰, δ18O = -15.68‰). This cement was precipitated late, mainly during the Middle and Late Jurassic. An important material source for this carbonate cement was the feldspar corrosion process that involved organic matter. The Ca2+, Fe3+ and Mg2+ ions released by the clay mineral transformation process were also important source materials. Because of water-rock interactions during the burial process, the oxygen isotope ratio of the fluid significantly increased during precipitation, by about 3‰. The dolomite cements in calcarenaceous sandstone that was precipitated during the Middle Jurassic have heavier carbon and oxygen isotope ratios, which are similar to those of carbonate debris in the sandstone(δ13C = 1.93‰, δ18O = -6.11‰), demonstrating that the two are from the same source that had a heavier oxygen isotope ratio(δ18O of about 2.2‰). The differences in fluid oxygen isotope ratios during cement precipitation reflect the influences of different water-rock interaction systems or different water-rock interaction strengths. This is the main reason why the sandstone containing many rigid particles(lithic quartz sandstone) has a relatively negative carbon isotope ratio and why the precipitation fluid in calcarenaceous sandstone has a relatively heavier oxygen isotope ratio. 展开更多
关键词 碳酸盐胶结物 水岩相互作用 胶结砂岩 流体演化 须家河组 相互作用模型 储集层 氧同位素比率
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部