The monitoring and warning of urban rail transit is the core of operation management, and the breadth and depth of the monitoring range directly affect the quality of urban rail transit operation. For the current dome...The monitoring and warning of urban rail transit is the core of operation management, and the breadth and depth of the monitoring range directly affect the quality of urban rail transit operation. For the current domestic monitoring system, most of the critical equipments and technologies are introduced from abroad;it is diseconomy, and also causes hidden danger. Realizing the localization of monitoring and early warning system is imperative. Based on the analysis of the present situation of urban rail transit operation safety at home and abroad, the paper proposes to use integrated technology to design basic framework of monitoring and warning system of urban rail train, and puts forward the critical technologies to realize the system. Compared with the existing monitoring system, the integrated monitoring system has the characteristics of wide monitoring range, clear division of labor, centralized management, coordination and integration operation and intelligent management, and embodies the concept of people-oriented. It has scientific significance for future construction of domestic Integrated Monitoring and Early Warning System (IMEWS) of urban rail transit.展开更多
The internet of things(IoT)has been widely considered to be integrated with high-speed railways to improve safety and service.It is important to achieve reliable communication in IoT for railways(IoT-R)under high mobi...The internet of things(IoT)has been widely considered to be integrated with high-speed railways to improve safety and service.It is important to achieve reliable communication in IoT for railways(IoT-R)under high mobility scenarios and strict energy constraints.Orthogonal time frequency space(OTFS)modulation is a two-dimensional modulation technique that has the potential to overcome the challenges in high Doppler environments.In addition,OTFS can have lower peak-to-average power ratio(PAPR)compared to orthogonal frequency division multiplexing,which is especially important for the application of IoT-R.Therefore,OTFS modulation for IoT-R is investigated in this paper.In order to decrease PAPR of OTFS and promote the application of OTFS modulation in IoT-R,the peak windowing technique is used in this paper.This technique can reduce the PAPR of OTFS by reducing the peak power and does not require multiple iterations.The impacts of different window functions,window sizes and clipping levels on PAPR and bit error rate of OTFS are simulated and discussed.The simulation results show that the peak windowing technique can efficiently reduce the PAPR of OTFS for IoT-R.展开更多
This paper proposes cooperative adaptive control schemes for a train platoon to improve efficient utility and guarantee string stability. The control schemes are developed based on a bidirectional strategy, i.e., the ...This paper proposes cooperative adaptive control schemes for a train platoon to improve efficient utility and guarantee string stability. The control schemes are developed based on a bidirectional strategy, i.e., the information of proximal(preceding and following) trains is used in the controller design. Based on available proximal information(prox-info) of location, speed, and acceleration, a direct adaptive control is designed to maintain the tracking interval at the minimum safe distance. Based on available prox-info of location, an observer-based adaptive control is designed to achieve the same target, which alleviates the requirements of equipped sensors to measure prox-info of speed and acceleration. The developed schemes are capable of on-line estimating of the unknown system parameters and stabilizing the closed-loop system, the string stability of train platoon is guaranteed on the basis of Lyapunov stability theorem. Numerical simulation results are presented to verify the effectiveness of the proposed control laws.展开更多
Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestio...Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.展开更多
In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line...In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.展开更多
This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics. To attenuate the influence of constrained input caused by actuato...This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics. To attenuate the influence of constrained input caused by actuator saturation, an effective auxiliary system is constructed to prevent the stability of closed loop system from being destroyed. Radial basis function neural networks(RBF-NNs) are used in the online learning of the unknown dynamics, which do not require an off-line training phase. Both state and output feedback control laws are developed. In the output feedback case, high-order sliding mode(HOSM) observer is utilized to estimate the unmeasurable system states. Simulation results are presented to verify the effectiveness of proposed schemes.展开更多
With the development of High-Speed Rail(HSR),countries and individual passengers alike have enjoyed far ranging benefits as a result-economic,social,environment and in added convenience.One of the important parts of H...With the development of High-Speed Rail(HSR),countries and individual passengers alike have enjoyed far ranging benefits as a result-economic,social,environment and in added convenience.One of the important parts of HSR construction is the signaling system,where wireless communications play a key role in the transmission of train control data.Channel estimation has a significant impact on the quality of the wireless communication,however,whose performance is degraded due to the fast mobility of HSR.This paper focuses on the channel estimation technology in HSR.We first summarize the key challenges for HSR channel estimation,especially the Inter-Carrier Interference(ICI)faced by Orthogonal Frequency Division Multiplexing(OFDM)systems.Then we provide a comprehensive review of existing pilot-aided channel estimation schemes from three points:channel model,estimation algorithm,joint channel estimation and ICI mitigation schemes.Lastly,we present the challenges of channel estimation for the Orthogonal Time Frequency Space(OTFS)system and Reconfigurable Intelligent Surface(RIS),which are promising techniques for HSR systems in the future sixth Generation(6G)wireless communication.展开更多
This study concerns with fault diagnosis of urban rail vehicle auxiliary inverter using wavelet packet and RBF neural network. Four statistical features are selected: standard voltage signal, voltage fluctuation signa...This study concerns with fault diagnosis of urban rail vehicle auxiliary inverter using wavelet packet and RBF neural network. Four statistical features are selected: standard voltage signal, voltage fluctuation signal, impulsive transient signal and frequency variation signal. In this article, the original signals are decomposed into different frequency subbands by wavelet packet. Next, an automatic feature extraction algorithm is constructed. Finally, those wavelet packet energy eigenvectors are taken as fault samples to train RBF neural network. The result shows that the RBF neural network is effective in the detection and diagnosis of various urban rail vehicle auxiliary inverter faults.展开更多
This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered ...This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered LRV has three rolling stocks and each one equips three sensors for monitoring the suspension system. A Kalman filter is applied to generate the residuals for fault diagnosis. For the purpose of fault isolation, a fault feature database is built in advance. The Eros and the norm distance between the fault feature of the new occurred fault and the one in the feature database are applied to measure the similarity of the feature which is the basis for the basic belief assignment to the fault, respectively. After the basic belief assignments are obtained, they are fused by using the D-S evidence theory. The fusion of the basic belief assignments increases the isolation accuracy significantly. The efficiency of the proposed method is demonstrated by two case studies.展开更多
As an important component of load transfer,various fatigue damages occur in the track as the rail service life and train traffic increase gradually,such as rail corrugation,rail joint damage,uneven thermite welds,rail ...As an important component of load transfer,various fatigue damages occur in the track as the rail service life and train traffic increase gradually,such as rail corrugation,rail joint damage,uneven thermite welds,rail squats fas-tener defects,etc.Real-time recognition of track defects plays a vital role in ensuring the safe and stable operation of rail transit.In this paper,an intelligent and innovative method is proposed to detect the track defects by using axle-box vibration acceleration and deep learning network,and the coexistence of the above-mentioned typical track defects in the track system is considered.Firstly,the dynamic relationship between the track defects(using the example of the fastening defects)and the axle-box vibration acceleration(ABVA)is investigated using the dynamic vehicle-track model.Then,a simulation model for the coupled dynamics of the vehicle and track with different track defects is established,and the wavelet power spectrum(WPS)analysis is performed for the vibra-tion acceleration signals of the axle box to extract the characteristic response.Lastly,using wavelet spectrum photos as input,an automatic detection technique based on the deep convolution neural network(DCNN)is sug-gested to realize the real-time intelligent detection and identification of various track problems.Thefindings demonstrate that the suggested approach achieves a 96.72%classification accuracy.展开更多
Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics o...Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics of high-speed trains under the interruption of stochastic irregular events. In the model, the high-speed rail traffic system is supposed to be equipped with the moving-block signalling system to guarantee maximum traversing capacity of the railway. To keep the safety of trains' movements, some operational strategies are proposed to control the movements of trains in the model, including traction operation, braking operation, and entering-station operation. The numerical simulations show that the designed model can well describe the movements of high-speed trains on the rail network. The research results can provide the useful information not only for investigating the propagation features of relevant delays under the irregular disturbance but also for rerouting and reseheduling trains on the rail network.展开更多
Based on the analysis of the impact of Doppler shift to the railway dedicated mobile communication quality under the condition of high-speed mobility,this paper presents a Doppler shift measurement approach based on t...Based on the analysis of the impact of Doppler shift to the railway dedicated mobile communication quality under the condition of high-speed mobility,this paper presents a Doppler shift measurement approach based on the phase estimation of frequency correction channel(FCCH) which correctly reflects the time-varying characteristic of the channel with a testing system developed.The Doppler shift data under the high-speed condition is collected,processed,analyzed,and compared with the simulation results.The scientific laws of the Doppler shift distribution of radio channel under high-speed condition are obtained.These data and analysis are essential for the establishment of high-speed railway Doppler power spectrum model and the development of the key technology of antiDoppler shift.展开更多
As a development direction of urban rail transit system,the train autonomous circumambulate system(TACS)can operate in a safer,more efficient,and more economical mode.However,most urban rail transit systems transmit s...As a development direction of urban rail transit system,the train autonomous circumambulate system(TACS)can operate in a safer,more efficient,and more economical mode.However,most urban rail transit systems transmit signals through industrial,scientific,and medical(ISM)frequency bands or narrow frequency bands,which cannot meet the requirements of TACS.As a promising solution,the 5th generation(5G)mobile communication provides more services for the future urban rail transit systems,and covers the shortages of exiting communication technologies in terms of capacity and reliability.In this paper,we first briefly review the research status of current train control system and introduce its limitations.Next,we propose a novel network architecture,and present new technologies and requirements of the proposed architecture for TACS.Some potential challenges are then discussed to give insights for further research of TACS.展开更多
The non-stationary behavior, caused by the train rmverrent, is the rmin factor for the variation of high speed railway channel. To measure the tirce-variant effect, the parameter of stationarity interval, in which the...The non-stationary behavior, caused by the train rmverrent, is the rmin factor for the variation of high speed railway channel. To measure the tirce-variant effect, the parameter of stationarity interval, in which the channel keeps constant or has no great change, is adopted based on Zhengzfiou- Xi'an (Zhengxi) passenger dedicated line measurement with different train speeds. The stationarity interval is calculated through the definition of Local Region of Stationarity (LRS) under three train ve- locities. Furthermore, the time non-stationary characteristic of high speed pared with five standard railway channel is corn- Multiple-Input MultipleOutput (MIMO) channel models, i.e. Spatial Channel Model (SCM), extended version of SCM (SCME), Wireless World Initiative New Radio Phase II (WINNERII), International Mobile Teleconmnications-Advanced (IMT-Advanced) and WiMAX models which contain the high speed moving scenario. The stationarity interval of real channel is 9 ms in 80% of the cases, which is shorter than those of the standard models. Hence the real channel of high speed railway changes more rapidly. The stationarity intervals of standard models are different due to different modeling methods and scenario def- initions. And the compared results are instructive for wireless system design in high speed railway.展开更多
In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. ...In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the "7.23" China-Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.展开更多
Channel estimation is a well-known challenge for wireless orthogonal frequency division multiplexing(OFDM)communication systems with massive antennas on high speed rails(HSRs).This paper investigates this problem and ...Channel estimation is a well-known challenge for wireless orthogonal frequency division multiplexing(OFDM)communication systems with massive antennas on high speed rails(HSRs).This paper investigates this problem and design two practicable uplink and downlink channel estimators for orthogonal frequency division multiplexing(OFDM)communication systems with massive antenna arrays at base station on HSRs.Specifically,we first use pilots to estimate the initial angle of arrival(AoA)and channel gain information of each uplink path through discrete Fourier transform(DFT),and then refine the estimates via the angle rotation technique and suggested pilot design.Based on the uplink angel estimation,we design a new downlink channel estimator for frequency division duplexing(FDD)systems.Additionally,we derive the Cramér-Rao lower bounds(CRLBs)of the AoA and channel gain estimates.Finally,numerical results are provided to corroborate our proposed studies.展开更多
The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies ...The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.展开更多
To effectively solve the traffic data problems such as data invalidation in the process of the acquisition of road traffic states,a road traffic states estimation algorithm based on matching of the regional traffic at...To effectively solve the traffic data problems such as data invalidation in the process of the acquisition of road traffic states,a road traffic states estimation algorithm based on matching of the regional traffic attracters was proposed in this work.First of all,the road traffic running states were divided into several different modes.The concept of the regional traffic attracters of the target link was put forward for effective matching.Then,the reference sequences of characteristics of traffic running states with the contents of the target link's traffic running states and regional traffic attracters under different modes were established.In addition,the current and historical regional traffic attracters of the target link were matched through certain matching rules,and the historical traffic running states of the target link corresponding to the optimal matching were selected as the initial recovery data,which were processed with Kalman filter to obtain the final recovery data.Finally,some typical expressways in Beijing were adopted for the verification of this road traffic states estimation algorithm.The results prove that this traffic states estimation approach based on matching of the regional traffic attracters is feasible and can achieve a high accuracy.展开更多
This paper presents a discrete-time model to describe the movements of a group of trains, in which some operational strategies, including traction operation, braking operation and impact of stochastic disturbance, are...This paper presents a discrete-time model to describe the movements of a group of trains, in which some operational strategies, including traction operation, braking operation and impact of stochastic disturbance, are defined. To show the dynamic characteristics of train traffic flow with stochastic disturbance, some numerical experiments on a railway line are simulated. The computational results show that the discrete-time movement model can well describe the movements of trains on a rail line with the moving-block signalling system. Comparing with the results of no disturbance, it finds that the traffic capacity of the rail line will decrease with the influence of stochastic disturbance. Additionally, the delays incurred by stochastic disturbance can be propagated to the subsequent trains, and then prolong their traversing time on the rail line. It can provide auxiliary information for rescheduling trains When the stochastic disturbance occurs on the railway.展开更多
This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the ...This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.展开更多
文摘The monitoring and warning of urban rail transit is the core of operation management, and the breadth and depth of the monitoring range directly affect the quality of urban rail transit operation. For the current domestic monitoring system, most of the critical equipments and technologies are introduced from abroad;it is diseconomy, and also causes hidden danger. Realizing the localization of monitoring and early warning system is imperative. Based on the analysis of the present situation of urban rail transit operation safety at home and abroad, the paper proposes to use integrated technology to design basic framework of monitoring and warning system of urban rail train, and puts forward the critical technologies to realize the system. Compared with the existing monitoring system, the integrated monitoring system has the characteristics of wide monitoring range, clear division of labor, centralized management, coordination and integration operation and intelligent management, and embodies the concept of people-oriented. It has scientific significance for future construction of domestic Integrated Monitoring and Early Warning System (IMEWS) of urban rail transit.
基金supported by the National Key R&D Program of China under Grant 2022YFF0608103the National Natural Science Foundation of China under Grant 62001519 and 62271037。
文摘The internet of things(IoT)has been widely considered to be integrated with high-speed railways to improve safety and service.It is important to achieve reliable communication in IoT for railways(IoT-R)under high mobility scenarios and strict energy constraints.Orthogonal time frequency space(OTFS)modulation is a two-dimensional modulation technique that has the potential to overcome the challenges in high Doppler environments.In addition,OTFS can have lower peak-to-average power ratio(PAPR)compared to orthogonal frequency division multiplexing,which is especially important for the application of IoT-R.Therefore,OTFS modulation for IoT-R is investigated in this paper.In order to decrease PAPR of OTFS and promote the application of OTFS modulation in IoT-R,the peak windowing technique is used in this paper.This technique can reduce the PAPR of OTFS by reducing the peak power and does not require multiple iterations.The impacts of different window functions,window sizes and clipping levels on PAPR and bit error rate of OTFS are simulated and discussed.The simulation results show that the peak windowing technique can efficiently reduce the PAPR of OTFS for IoT-R.
基金Project supported by the Beijing Jiaotong University Research Program,China(Grant No.RCS2014ZT18)the Fundamental Research Funds for Central Universities,China(Grant No.2015JBZ007)the National Natural Science Foundation of China(Grant Nos.61233001,61322307,and 61304196)
文摘This paper proposes cooperative adaptive control schemes for a train platoon to improve efficient utility and guarantee string stability. The control schemes are developed based on a bidirectional strategy, i.e., the information of proximal(preceding and following) trains is used in the controller design. Based on available proximal information(prox-info) of location, speed, and acceleration, a direct adaptive control is designed to maintain the tracking interval at the minimum safe distance. Based on available prox-info of location, an observer-based adaptive control is designed to achieve the same target, which alleviates the requirements of equipped sensors to measure prox-info of speed and acceleration. The developed schemes are capable of on-line estimating of the unknown system parameters and stabilizing the closed-loop system, the string stability of train platoon is guaranteed on the basis of Lyapunov stability theorem. Numerical simulation results are presented to verify the effectiveness of the proposed control laws.
基金supported the National Natural Science Foundation of China (71621001, 71825004, and 72001019)the Fundamental Research Funds for Central Universities (2020JBM031 and 2021YJS203)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety (RCS2020ZT001)
文摘Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.
基金supported by the National Basic Research Program of China (Grant No. 2012CB725400)the National Natural Science Foundation of China (Grant No. 71131001-1)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,China (Grant Nos. RCS2012ZZ001 and RCS2012ZT001)
文摘In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2012AA041701)the Fundamental Research Funds for Central Universities of China(Grant No.2013JBZ007)+1 种基金the National Natural Science Foundation of China(Grant Nos.61233001,61322307,61304196,and 61304157)the Research Program of Beijing Jiaotong University,China(Grant No.RCS2012ZZ003)
文摘This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics. To attenuate the influence of constrained input caused by actuator saturation, an effective auxiliary system is constructed to prevent the stability of closed loop system from being destroyed. Radial basis function neural networks(RBF-NNs) are used in the online learning of the unknown dynamics, which do not require an off-line training phase. Both state and output feedback control laws are developed. In the output feedback case, high-order sliding mode(HOSM) observer is utilized to estimate the unmeasurable system states. Simulation results are presented to verify the effectiveness of proposed schemes.
文摘With the development of High-Speed Rail(HSR),countries and individual passengers alike have enjoyed far ranging benefits as a result-economic,social,environment and in added convenience.One of the important parts of HSR construction is the signaling system,where wireless communications play a key role in the transmission of train control data.Channel estimation has a significant impact on the quality of the wireless communication,however,whose performance is degraded due to the fast mobility of HSR.This paper focuses on the channel estimation technology in HSR.We first summarize the key challenges for HSR channel estimation,especially the Inter-Carrier Interference(ICI)faced by Orthogonal Frequency Division Multiplexing(OFDM)systems.Then we provide a comprehensive review of existing pilot-aided channel estimation schemes from three points:channel model,estimation algorithm,joint channel estimation and ICI mitigation schemes.Lastly,we present the challenges of channel estimation for the Orthogonal Time Frequency Space(OTFS)system and Reconfigurable Intelligent Surface(RIS),which are promising techniques for HSR systems in the future sixth Generation(6G)wireless communication.
文摘This study concerns with fault diagnosis of urban rail vehicle auxiliary inverter using wavelet packet and RBF neural network. Four statistical features are selected: standard voltage signal, voltage fluctuation signal, impulsive transient signal and frequency variation signal. In this article, the original signals are decomposed into different frequency subbands by wavelet packet. Next, an automatic feature extraction algorithm is constructed. Finally, those wavelet packet energy eigenvectors are taken as fault samples to train RBF neural network. The result shows that the RBF neural network is effective in the detection and diagnosis of various urban rail vehicle auxiliary inverter faults.
文摘This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered LRV has three rolling stocks and each one equips three sensors for monitoring the suspension system. A Kalman filter is applied to generate the residuals for fault diagnosis. For the purpose of fault isolation, a fault feature database is built in advance. The Eros and the norm distance between the fault feature of the new occurred fault and the one in the feature database are applied to measure the similarity of the feature which is the basis for the basic belief assignment to the fault, respectively. After the basic belief assignments are obtained, they are fused by using the D-S evidence theory. The fusion of the basic belief assignments increases the isolation accuracy significantly. The efficiency of the proposed method is demonstrated by two case studies.
基金supported by the Doctoral Fund Project(Grant No.X22003Z).
文摘As an important component of load transfer,various fatigue damages occur in the track as the rail service life and train traffic increase gradually,such as rail corrugation,rail joint damage,uneven thermite welds,rail squats fas-tener defects,etc.Real-time recognition of track defects plays a vital role in ensuring the safe and stable operation of rail transit.In this paper,an intelligent and innovative method is proposed to detect the track defects by using axle-box vibration acceleration and deep learning network,and the coexistence of the above-mentioned typical track defects in the track system is considered.Firstly,the dynamic relationship between the track defects(using the example of the fastening defects)and the axle-box vibration acceleration(ABVA)is investigated using the dynamic vehicle-track model.Then,a simulation model for the coupled dynamics of the vehicle and track with different track defects is established,and the wavelet power spectrum(WPS)analysis is performed for the vibra-tion acceleration signals of the axle box to extract the characteristic response.Lastly,using wavelet spectrum photos as input,an automatic detection technique based on the deep convolution neural network(DCNN)is sug-gested to realize the real-time intelligent detection and identification of various track problems.Thefindings demonstrate that the suggested approach achieves a 96.72%classification accuracy.
基金Supported by the National Natural Science Foundation of China under Grant No. 70901006Research Foundation of Beijing Jiaotong University under Grant Nos. 2011JBM158, 2011JBM162Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant Nos. RCS2009ZT001, RCS2010ZZ001
文摘Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics of high-speed trains under the interruption of stochastic irregular events. In the model, the high-speed rail traffic system is supposed to be equipped with the moving-block signalling system to guarantee maximum traversing capacity of the railway. To keep the safety of trains' movements, some operational strategies are proposed to control the movements of trains in the model, including traction operation, braking operation, and entering-station operation. The numerical simulations show that the designed model can well describe the movements of high-speed trains on the rail network. The research results can provide the useful information not only for investigating the propagation features of relevant delays under the irregular disturbance but also for rerouting and reseheduling trains on the rail network.
基金Supported by the National Natural Science Foundation of China(No.U133420261222105)+1 种基金the Key Grant Project of Chinese Ministry of Education(No.313006)the Project of State Key Lab of Rail Traffic Control and Safety(No.RCS 2014ZT11)
文摘Based on the analysis of the impact of Doppler shift to the railway dedicated mobile communication quality under the condition of high-speed mobility,this paper presents a Doppler shift measurement approach based on the phase estimation of frequency correction channel(FCCH) which correctly reflects the time-varying characteristic of the channel with a testing system developed.The Doppler shift data under the high-speed condition is collected,processed,analyzed,and compared with the simulation results.The scientific laws of the Doppler shift distribution of radio channel under high-speed condition are obtained.These data and analysis are essential for the establishment of high-speed railway Doppler power spectrum model and the development of the key technology of antiDoppler shift.
基金This work was supported in part by the National Natural Science Foundation of China(U2001213,61971191 and 61661021)in part by the Beijing Natural Science Foundation under Grant L182018 and L201011,in part by National Key Research and Development Project(2020YFB1807204)+1 种基金in part by the open project of Shanghai Institute of Microsystem and Information Technology(20190910)in part by the Key project of Natural Science Foundation of Jiangxi Province(20202ACBL202006).
文摘As a development direction of urban rail transit system,the train autonomous circumambulate system(TACS)can operate in a safer,more efficient,and more economical mode.However,most urban rail transit systems transmit signals through industrial,scientific,and medical(ISM)frequency bands or narrow frequency bands,which cannot meet the requirements of TACS.As a promising solution,the 5th generation(5G)mobile communication provides more services for the future urban rail transit systems,and covers the shortages of exiting communication technologies in terms of capacity and reliability.In this paper,we first briefly review the research status of current train control system and introduce its limitations.Next,we propose a novel network architecture,and present new technologies and requirements of the proposed architecture for TACS.Some potential challenges are then discussed to give insights for further research of TACS.
基金Acknowledgements This work was supported partially by the Beijing Natural Science Foundation under Crant No. 4112048 the Program for New Century Excellent Talents in University under Gant No. NCET-09-0206+4 种基金 the National Natural Science Foundation of China under Crant No. 60830001 the Key Project of State Key Laboratory of Rail Traffic Control and Safety under Crants No. RCS2008ZZ006, No. RCS2011ZZ008 the Program for Changjiang Scholars and Innovative Research Team in University under Crant No. IRT0949 the Project of State Key kab. of Rail Traffic Control and Safety under C~ants No. RCS2008ZT005, No. RCS2010ZT012 the Fundamental Research Funds for the Central Universities under Crants No. 2010JBZ(~8, No. 2011YJS010.
文摘The non-stationary behavior, caused by the train rmverrent, is the rmin factor for the variation of high speed railway channel. To measure the tirce-variant effect, the parameter of stationarity interval, in which the channel keeps constant or has no great change, is adopted based on Zhengzfiou- Xi'an (Zhengxi) passenger dedicated line measurement with different train speeds. The stationarity interval is calculated through the definition of Local Region of Stationarity (LRS) under three train ve- locities. Furthermore, the time non-stationary characteristic of high speed pared with five standard railway channel is corn- Multiple-Input MultipleOutput (MIMO) channel models, i.e. Spatial Channel Model (SCM), extended version of SCM (SCME), Wireless World Initiative New Radio Phase II (WINNERII), International Mobile Teleconmnications-Advanced (IMT-Advanced) and WiMAX models which contain the high speed moving scenario. The stationarity interval of real channel is 9 ms in 80% of the cases, which is shorter than those of the standard models. Hence the real channel of high speed railway changes more rapidly. The stationarity intervals of standard models are different due to different modeling methods and scenario def- initions. And the compared results are instructive for wireless system design in high speed railway.
基金Project supported by the National High Technology Research and Development Program of China (Grant No.2011AA110502)the National Natural Science Foundation of China (Grant No.71271022)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety,China (Grant No.RCS2012ZQ001)
文摘In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the "7.23" China-Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.
基金National S&T Project 2018YJS036.This study is supported in part by Key Laboratory of Universal Wireless Communications(BUPT),Ministry of Education,P.R.China(No.KFKT-2018104)by the Natural Science Foundation of China(NSFC,No.61571037,61871026,61961130391,and U1834210)+2 种基金NSFC Outstanding Youth(No.61725101)National Key R&D Program of China under Grant 2016YFE0200900the Royal Society Newton Advanced Fellowship under Grant NA191006.
文摘Channel estimation is a well-known challenge for wireless orthogonal frequency division multiplexing(OFDM)communication systems with massive antennas on high speed rails(HSRs).This paper investigates this problem and design two practicable uplink and downlink channel estimators for orthogonal frequency division multiplexing(OFDM)communication systems with massive antenna arrays at base station on HSRs.Specifically,we first use pilots to estimate the initial angle of arrival(AoA)and channel gain information of each uplink path through discrete Fourier transform(DFT),and then refine the estimates via the angle rotation technique and suggested pilot design.Based on the uplink angel estimation,we design a new downlink channel estimator for frequency division duplexing(FDD)systems.Additionally,we derive the Cramér-Rao lower bounds(CRLBs)of the AoA and channel gain estimates.Finally,numerical results are provided to corroborate our proposed studies.
基金supported by the National Natural Science Foundation of China(Grant Nos.61522109,61671253,61571037and 91738201)the Fundamental Research Funds for the Central Universities(No.2016JBZ006)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20150040and BK20171446)the Key Project of Natural Science Research of Higher Education Institutions of Jiangsu Province(No.15KJA510003)
文摘The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.
基金Projects(D07020601400707,D101106049710005)supported by the Beijing Science Foundation Plan Project,ChinaProjects(2006AA11Z231,2012AA112401)supported by the National High Technology Research and Development Program of China(863 Program)Project(61104164)supported by the National Natural Science Foundation of China
文摘To effectively solve the traffic data problems such as data invalidation in the process of the acquisition of road traffic states,a road traffic states estimation algorithm based on matching of the regional traffic attracters was proposed in this work.First of all,the road traffic running states were divided into several different modes.The concept of the regional traffic attracters of the target link was put forward for effective matching.Then,the reference sequences of characteristics of traffic running states with the contents of the target link's traffic running states and regional traffic attracters under different modes were established.In addition,the current and historical regional traffic attracters of the target link were matched through certain matching rules,and the historical traffic running states of the target link corresponding to the optimal matching were selected as the initial recovery data,which were processed with Kalman filter to obtain the final recovery data.Finally,some typical expressways in Beijing were adopted for the verification of this road traffic states estimation algorithm.The results prove that this traffic states estimation approach based on matching of the regional traffic attracters is feasible and can achieve a high accuracy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 70901006 and 60634010)the State Key Laboratory of Rail Traffic Control and Safety (Grant Nos. RCS2009ZT001 and RCS2008ZZ001)Beijing Jiaotong University, and the Innovation Foundation of Science and Technology for Excellent Doctorial Candidate of Beijing Jiaotong University (Grant No. 141034522)
文摘This paper presents a discrete-time model to describe the movements of a group of trains, in which some operational strategies, including traction operation, braking operation and impact of stochastic disturbance, are defined. To show the dynamic characteristics of train traffic flow with stochastic disturbance, some numerical experiments on a railway line are simulated. The computational results show that the discrete-time movement model can well describe the movements of trains on a rail line with the moving-block signalling system. Comparing with the results of no disturbance, it finds that the traffic capacity of the rail line will decrease with the influence of stochastic disturbance. Additionally, the delays incurred by stochastic disturbance can be propagated to the subsequent trains, and then prolong their traversing time on the rail line. It can provide auxiliary information for rescheduling trains When the stochastic disturbance occurs on the railway.
基金partially supported by the National Natural Science Foundation of China under Grant No.61172073the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2012D19+1 种基金the Fundamental Research Funds for the Central Universities,Beijing Jiaotong University under Grant No.2013JBZ01the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-12-0766
文摘This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.