This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile...This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile strength and total elongation of the hot-rolled and aged joints increased with the packaging vacuum,and the tensile specimens fractured at the matrix after exceeding 1 Pa.Non-equilibrium grain boundaries were formed at the hot-rolled interface,and a large amount of Mg_(2)Si particles were linearly precipitated along the interfacial grain boundaries(IGBs).During subsequent heat treatment,Mg_(2)Si particles dissolved back into the matrix,and Al_(2)O_(3) film remaining at the interface eventually evolved into MgO.In addition,the local IGBs underwent staged elimination during HRB,which facilitated the interface healing due to the fusion of grains at the interface.This process was achieved by the dissociation,emission,and annihilation of dislocations on the IGBs.展开更多
The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnac...The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation.展开更多
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode...Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))is emerging as a promising visible-light photocatalyst while the low crystallinity with sluggish charge separation/migration dynamics significantly restricts its practical applicat...Graphitic carbon nitride(g-C_(3)N_(4))is emerging as a promising visible-light photocatalyst while the low crystallinity with sluggish charge separation/migration dynamics significantly restricts its practical applications.Currently,synthesizing highly crystalline g-C_(3)N_(4) with sufficient surface activities still remains challenging.Herein,different from using alkali molten salts which is commonly reported,we propose an approach for synthesis of highly crystalline g-C_(3)N_(4) with FeCl3/KCl rock/molten mixed salts.The rock salt can serve as the structure-directing template while molten salt provides the required liquid medium for re-condensation.Intriguingly,the synthesized photocatalyst showed further enhanced crystallinity and improved surface area along with high p/p*excitation compared with crystalline C_(3)N_(4) prepared from conventional molten-salt methods.These catalytically advantageous features lead to its superior photocatalytic and piezocatalytic activities with a high reactivity for overall water splitting that is not commonly reported for C_(3)N_(4).This work provides an effective strategy for structural optimization of organic semiconductor based materials and may inspire new ideas for the design of advanced photocatalysts.展开更多
In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt...In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt%) was obtained by magnetic separation under the optimum SMR conditions:siderite dosage 40wt%,roasting temperature 700℃,roasting time 10 min.According to the magnetic analysis,SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals,thus enabling the recovery of iron via magnetic separation.Based on the phase transformation analysis,during the SMR process,limonite was first dehydrated and converted to hematite,and then siderite decomposed to generate magnetite and CO,where CO reduced the freshly formed hematite to magnetite.The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure,making them easier to be ground.The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism,suggesting that the diffusion of CO controlled the reaction.These results encourage the application of siderite as a reductant in SMR.展开更多
Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll...Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling.展开更多
The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a la...The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.展开更多
After the billet of Casting and Rolling GH4169 alloy was directly aged (DA) treated at 720 ℃ and 620 ℃, creep behavior and deformed features of the alloy were investigated by means of the measurement of creep curves...After the billet of Casting and Rolling GH4169 alloy was directly aged (DA) treated at 720 ℃ and 620 ℃, creep behavior and deformed features of the alloy were investigated by means of the measurement of creep curves and microstructure observation. Results show that the DA Casting and Rolling GH4169 Superalloy displays a lower strain rate during creep and longer lifetimes under the condition of the applied stress of 700 MPa at 650 ℃ , the creep lifetimes of the alloy decrease to 127 h as temperature is elevated to 660 ℃ , and therefore the alloy exhibits an obvious sensitivity of the applied temperatures. During creep, the deformation mechanism of the alloy is thought to be the twinning deformation and slipping of dislocation within the twinning regions. Thereinto, the dislocation slipping of the single and double orientations occur within the twins. As creep enters the tertiary steady state stage, the micro-crack appears on the grains boundaries along the direction vertical to the applied stress axis, and expands along the grain boundary up to fracture.展开更多
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance...To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling.展开更多
The existing research of the flatness control for strip cold rolling mainly focuses on the calculation of the optimum adjustment of individual flatness actuator in accordance with the flatness deviation, which can be ...The existing research of the flatness control for strip cold rolling mainly focuses on the calculation of the optimum adjustment of individual flatness actuator in accordance with the flatness deviation, which can be used for general flatness control. However, it does not work for some special rolling processes, such as the elimination of ultra single side edge-waves and the prevention of strip break due to tilting roll control overshooting. For the purpose of solving these problems, the influences of non-symmetrical work roll bending and intermediate roll bending on flatness control were analyzed by studying efficiencies of them. Moreover, impacts of two kinds of non-symmetrical roll bending control on the pressure distribution between rolls were studied theoretically. A non-symmetrical work roll bending model was developed by theoretical analysis in accordance with practical conditions. The model was applied to the revamp of a 1250 6-H reversible universal crown mill (UCM) cold mill. Theoretical study and practical applications show that the coordination utilization of the non-symmetrical work roll bending control and tilting roll control was effective in flatness control when there appeared bad strip single side edge waves, especially when the incoming strip was with a wedge shape. In addition, the risk of strip break due to tilting control overshooting could be reduced. Furthermore, the non-symmetrical roll bending control can reduce the extent of uneven distribution of pressure between rolls caused by intermediate roll shifting in flatness control and slow down roll wear. The non-symmetrical roll bending control technology has important theoretical and practical significance to better flatness control.展开更多
Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation str...Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.展开更多
Variable gauge rolling is a new process to obtain a plate for which the thickness changes continuously by continuously and dynamically adjusting the roll gap upward and downward in the rolling process.This technology ...Variable gauge rolling is a new process to obtain a plate for which the thickness changes continuously by continuously and dynamically adjusting the roll gap upward and downward in the rolling process.This technology is an efective method for producing lightweight,low-cost,and economical plates.However,variable gauge rolling is an unsteady process,and the changes in the force and deformation parameters are complex.In this research,based on the minimum energy theory of the variational principle and considering the characteristics of the roll movement and workpiece deformation comprehensively,the internal plastic deformation,friction,shear and tension powers,and the minimum result of the total power functional in upward and downward rolling are obtained with the frst integral and then with a variation of adopting the specifc plastic power and strain rate vector inner product.The analytical results of the deformation and force parameters are also established using the variational method.Then the precision of this model is certifed using the measured values in a medium plate hot rolling plant and the experimental data for Tailor Rolled Blank rolling.Good agreement is found.Additionally,the variation rule of bite angle,neutral angle,and location neutral points are shown,and the change mechanism of the friction parameter on the stress state efect coefcient is given in variable gauge rolling.This research proposes a new mathematical model for rolling process control that provides a scientifc basis and technical support for obtaining an accurate section shape in variable gauge rolling production.展开更多
The dynamic recrystallization and static recrystallization in a low carbon steel were investigated through single-pass and double-pass experiments. The results indicate that as the deformation temperature increases an...The dynamic recrystallization and static recrystallization in a low carbon steel were investigated through single-pass and double-pass experiments. The results indicate that as the deformation temperature increases and the strain rate decreases, the shape of the stress-strain curve is changed from dynamic recovery shape to dynamic recrystallization shape. The austenite could not recrystallize within a few seconds after deformation at temperature below 900 ℃. According to the change in microstructure during deformation, the controlled rolling of low carbon steel can be divided into four stages: dynamic recrystallization, dynamic recovery, strain-induced ferrite transformation, and rolling in two-phase region. According to the microstructure after deformation, the controlled rolling of low carbon steel can be divided into five regions: non-recrystallized austenite, partly-recrystallized austenite, fully-recrystallized austenite, austenite to ferrite transformation, and dual phase.展开更多
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and r...In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.展开更多
Fusion welding easily causes microstructural coarsening in the heat-affected zone(HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ(ICCGHAZ), which conside...Fusion welding easily causes microstructural coarsening in the heat-affected zone(HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ(ICCGHAZ), which considerably deteriorates the toughness of the joint. In the present work, 11-mm thick pipeline steel was joined by preheating and double-sided friction stir welding(FSW). A comparative study on the microstructure and toughness in the ICCGHAZs for FSW and gas metal arc welding(GMAW) was performed. The toughness in the ICCGHAZ for FSW was improved significantly than that in the ICCGHAZ for GMAW. Generally, the nugget zone(NZ) has a coarse microstructure in the FSW steel joint formed at the highest peak temperature. However, in the current study, the microstructure in the one-pass NZ was remarkably refined owing to the static recrystallization of ferrite. An excellent toughness was achieved in the NZ of the pipeline steel joint that employed FSW.展开更多
Holding temperature and holding thickness are main parameters for two-phase controlled rolling on plate mill. The optimization of holding temperature and holding thickness for pass schedule calculation of two-phase co...Holding temperature and holding thickness are main parameters for two-phase controlled rolling on plate mill. The optimization of holding temperature and holding thickness for pass schedule calculation of two-phase controlled rolling on plate mill was presented and its feature is as follows: (1) Determination of holding thickness can be automatically obtained based on the influence of mill safety limits, tracking zone length and holding time on holding thickness; (2) Determination of holding temperature can be automatically obtained and the holding time can be reduced as much as possible; (3) Algorithm can modify the holding temperature and thickness depending on slab size and product size.展开更多
An integrated metallurgical model was developed for Nb steels to predict the microstructure evolution and mechanical properties during the hot-strip rolling and cooling process. On the basis of the industrial data, th...An integrated metallurgical model was developed for Nb steels to predict the microstructure evolution and mechanical properties during the hot-strip rolling and cooling process. On the basis of the industrial data, the transformation kinetics, strength, and elongation rate were evaluated for different chemical compositions and processing parameters. The yield strength and tensile strength increase with increasing Nb content or decreasing finishing temperature. The bainite distributed in finer ferrite matrix, which is produced at relatively low coiling temperatures, can greatly increase the strength of steel, especially tensile strength, thereby decreasing the yield ratio. A reasonable agreement was found between the predicted and measured results. It indicates that the present models can be used to simulate the actual production process.展开更多
Thermal crown of roll is an important factor, which affects strip profile. It is necessary to analyze the temperature field and thermal crown of roll for hot strip mill. A new simplified finite element method (FEM) ...Thermal crown of roll is an important factor, which affects strip profile. It is necessary to analyze the temperature field and thermal crown of roll for hot strip mill. A new simplified finite element method (FEM) was used to analyze the temperature field and thermal crown of roll, and corresponding models were built according to the practical boundary conditions. Transient roll temperature field and thermal crown were simulated by ANSYS FEM software with considering transient thermal contact and complex boundary condition. Temperature and thermal crown variations on roll surface nodes were obtained. The thermal crown results of roll obtained by FEM simulation were in good agreement with the measured data, indicating that simplified FEM models and results were correct.展开更多
As an essential renewable mineral resource,mollusk shells can be used as handicrafts,building materials,adsor-bents,etc.However,there are few reports on the wear resistance of their structures.The Vicker’s hardness a...As an essential renewable mineral resource,mollusk shells can be used as handicrafts,building materials,adsor-bents,etc.However,there are few reports on the wear resistance of their structures.The Vicker’s hardness and friction,and wear resistance of different microstructures in mollusk shells were comparatively studied in the pre-sent work.The hardness of prismatic structures is lower than that of cross-lamellar and nacreous structures.How-ever,the experimental results of sliding tests indicate that the prismatic structure exhibits the best anti-wear ability compared with foliated,crossed-lamellar,and nacreous structures.The anti-wear and hardness do not present a positive correlation,as the wear resistance properties of different microstructures in mollusk shells are governed jointly by organic matrix,structural arrangement,and basic building block actions.The present researchfindings are expected to provide fundamental insight into the design of renewable bionic materials with high wear resistance.展开更多
A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3...A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.展开更多
基金This work was financially supported by the National Key Research and Development Program of China(No.2018YFA0707300)the Key Research and Development Program projects of Shandong(No.2020CXGC010304).
文摘This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile strength and total elongation of the hot-rolled and aged joints increased with the packaging vacuum,and the tensile specimens fractured at the matrix after exceeding 1 Pa.Non-equilibrium grain boundaries were formed at the hot-rolled interface,and a large amount of Mg_(2)Si particles were linearly precipitated along the interfacial grain boundaries(IGBs).During subsequent heat treatment,Mg_(2)Si particles dissolved back into the matrix,and Al_(2)O_(3) film remaining at the interface eventually evolved into MgO.In addition,the local IGBs underwent staged elimination during HRB,which facilitated the interface healing due to the fusion of grains at the interface.This process was achieved by the dissociation,emission,and annihilation of dislocations on the IGBs.
基金Funded by the National Natural Science Foundation of China(No.52071065)Fundamental Research Funds for the Central Universities(No.N2007007)。
文摘The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation.
基金Project(2023JH26-10100002)supported by the Liaoning Science and Technology Major Project,ChinaProjects(U21A20117,52074085)supported by the National Natural Science Foundation of China+1 种基金Project(2022JH2/101300008)supported by the Liaoning Applied Basic Research Program Project,ChinaProject(22567612H)supported by the Hebei Provincial Key Laboratory Performance Subsidy Project,China。
文摘Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.
基金supported by the National Natural Science Foundation of China(51902045,51904059)Fundamental Research Funds for the Central Universities(N2002005,N2125004,N2225038,N2225044)+2 种基金Applied Basic Research Program of Liaoning(2022JH2/101300200)Young Elite Scientist Sponsorship Program by CAST(YESS)2019-2021QNRCNational Research Foundation of Korea(NRF)grant funded by the Korean government(Ministry of Science,ICT&Future Planning)(NRF-2020R1F1A1075601 and NRF-2021R1A4A2001658).
文摘Graphitic carbon nitride(g-C_(3)N_(4))is emerging as a promising visible-light photocatalyst while the low crystallinity with sluggish charge separation/migration dynamics significantly restricts its practical applications.Currently,synthesizing highly crystalline g-C_(3)N_(4) with sufficient surface activities still remains challenging.Herein,different from using alkali molten salts which is commonly reported,we propose an approach for synthesis of highly crystalline g-C_(3)N_(4) with FeCl3/KCl rock/molten mixed salts.The rock salt can serve as the structure-directing template while molten salt provides the required liquid medium for re-condensation.Intriguingly,the synthesized photocatalyst showed further enhanced crystallinity and improved surface area along with high p/p*excitation compared with crystalline C_(3)N_(4) prepared from conventional molten-salt methods.These catalytically advantageous features lead to its superior photocatalytic and piezocatalytic activities with a high reactivity for overall water splitting that is not commonly reported for C_(3)N_(4).This work provides an effective strategy for structural optimization of organic semiconductor based materials and may inspire new ideas for the design of advanced photocatalysts.
基金financially supported by the National Natural Science Foundation of China(Nos.51874071 and 52022019)。
文摘In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt%) was obtained by magnetic separation under the optimum SMR conditions:siderite dosage 40wt%,roasting temperature 700℃,roasting time 10 min.According to the magnetic analysis,SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals,thus enabling the recovery of iron via magnetic separation.Based on the phase transformation analysis,during the SMR process,limonite was first dehydrated and converted to hematite,and then siderite decomposed to generate magnetite and CO,where CO reduced the freshly formed hematite to magnetite.The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure,making them easier to be ground.The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism,suggesting that the diffusion of CO controlled the reaction.These results encourage the application of siderite as a reductant in SMR.
基金Item Sponsored by National Natural Science Foundation of China (50534020)
文摘Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling.
基金Supported by National Natural Science Foundation of China(Grant Nos.51174057,51274062)National High Technology Research and Development Program of China(863 Program,Grant No.2012AA03A503)
文摘The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.
文摘After the billet of Casting and Rolling GH4169 alloy was directly aged (DA) treated at 720 ℃ and 620 ℃, creep behavior and deformed features of the alloy were investigated by means of the measurement of creep curves and microstructure observation. Results show that the DA Casting and Rolling GH4169 Superalloy displays a lower strain rate during creep and longer lifetimes under the condition of the applied stress of 700 MPa at 650 ℃ , the creep lifetimes of the alloy decrease to 127 h as temperature is elevated to 660 ℃ , and therefore the alloy exhibits an obvious sensitivity of the applied temperatures. During creep, the deformation mechanism of the alloy is thought to be the twinning deformation and slipping of dislocation within the twinning regions. Thereinto, the dislocation slipping of the single and double orientations occur within the twins. As creep enters the tertiary steady state stage, the micro-crack appears on the grains boundaries along the direction vertical to the applied stress axis, and expands along the grain boundary up to fracture.
基金Project(52005358)supported by the National Natural Science Foundation of ChinaProject(2018YFB1307902)supported by the National Key R&D Program of China+1 种基金Project(201901D111243)supported by the Natural Science Foundation of Shanxi Province,ChinaProject(2019-KF-25-05)supported by the Natural Science Foundation of Liaoning Province,China。
文摘To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling.
基金supported by National Natural Science Foundation of China (Grant No. 50534020)
文摘The existing research of the flatness control for strip cold rolling mainly focuses on the calculation of the optimum adjustment of individual flatness actuator in accordance with the flatness deviation, which can be used for general flatness control. However, it does not work for some special rolling processes, such as the elimination of ultra single side edge-waves and the prevention of strip break due to tilting roll control overshooting. For the purpose of solving these problems, the influences of non-symmetrical work roll bending and intermediate roll bending on flatness control were analyzed by studying efficiencies of them. Moreover, impacts of two kinds of non-symmetrical roll bending control on the pressure distribution between rolls were studied theoretically. A non-symmetrical work roll bending model was developed by theoretical analysis in accordance with practical conditions. The model was applied to the revamp of a 1250 6-H reversible universal crown mill (UCM) cold mill. Theoretical study and practical applications show that the coordination utilization of the non-symmetrical work roll bending control and tilting roll control was effective in flatness control when there appeared bad strip single side edge waves, especially when the incoming strip was with a wedge shape. In addition, the risk of strip break due to tilting control overshooting could be reduced. Furthermore, the non-symmetrical roll bending control can reduce the extent of uneven distribution of pressure between rolls caused by intermediate roll shifting in flatness control and slow down roll wear. The non-symmetrical roll bending control technology has important theoretical and practical significance to better flatness control.
基金Project(2006BAE03A08)supported by the National Key Technology R&D Program of China
文摘Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.
基金Supported by National Natural Science Foundation of China(Grant Nos.51904206,52105390,51974196,51805359)Open Research Fund from the State Key Laboratory of Rolling and Automation,Northeastern University(Grant No.2020RALKFKT011)+1 种基金Shanxi Province Science and Technology Major Projects(Grant No.20181102015)China Postdoctoral Science Foundation(Grant No.2020M670705).
文摘Variable gauge rolling is a new process to obtain a plate for which the thickness changes continuously by continuously and dynamically adjusting the roll gap upward and downward in the rolling process.This technology is an efective method for producing lightweight,low-cost,and economical plates.However,variable gauge rolling is an unsteady process,and the changes in the force and deformation parameters are complex.In this research,based on the minimum energy theory of the variational principle and considering the characteristics of the roll movement and workpiece deformation comprehensively,the internal plastic deformation,friction,shear and tension powers,and the minimum result of the total power functional in upward and downward rolling are obtained with the frst integral and then with a variation of adopting the specifc plastic power and strain rate vector inner product.The analytical results of the deformation and force parameters are also established using the variational method.Then the precision of this model is certifed using the measured values in a medium plate hot rolling plant and the experimental data for Tailor Rolled Blank rolling.Good agreement is found.Additionally,the variation rule of bite angle,neutral angle,and location neutral points are shown,and the change mechanism of the friction parameter on the stress state efect coefcient is given in variable gauge rolling.This research proposes a new mathematical model for rolling process control that provides a scientifc basis and technical support for obtaining an accurate section shape in variable gauge rolling production.
基金Item Sponsored by High Technology Development Programof China (2001AA332020) and National Natural ScienceFoundation of China (50271015)
文摘The dynamic recrystallization and static recrystallization in a low carbon steel were investigated through single-pass and double-pass experiments. The results indicate that as the deformation temperature increases and the strain rate decreases, the shape of the stress-strain curve is changed from dynamic recovery shape to dynamic recrystallization shape. The austenite could not recrystallize within a few seconds after deformation at temperature below 900 ℃. According to the change in microstructure during deformation, the controlled rolling of low carbon steel can be divided into four stages: dynamic recrystallization, dynamic recovery, strain-induced ferrite transformation, and rolling in two-phase region. According to the microstructure after deformation, the controlled rolling of low carbon steel can be divided into five regions: non-recrystallized austenite, partly-recrystallized austenite, fully-recrystallized austenite, austenite to ferrite transformation, and dual phase.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(N110307001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.
基金financially supported by the National Nature Science Foundation of China (No. 51774085)Liaoning Province Excellent Youth Foundation (No. 2020-YQ03)the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University (No. 2020RALKFKT009)。
文摘Fusion welding easily causes microstructural coarsening in the heat-affected zone(HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ(ICCGHAZ), which considerably deteriorates the toughness of the joint. In the present work, 11-mm thick pipeline steel was joined by preheating and double-sided friction stir welding(FSW). A comparative study on the microstructure and toughness in the ICCGHAZs for FSW and gas metal arc welding(GMAW) was performed. The toughness in the ICCGHAZ for FSW was improved significantly than that in the ICCGHAZ for GMAW. Generally, the nugget zone(NZ) has a coarse microstructure in the FSW steel joint formed at the highest peak temperature. However, in the current study, the microstructure in the one-pass NZ was remarkably refined owing to the static recrystallization of ferrite. An excellent toughness was achieved in the NZ of the pipeline steel joint that employed FSW.
文摘Holding temperature and holding thickness are main parameters for two-phase controlled rolling on plate mill. The optimization of holding temperature and holding thickness for pass schedule calculation of two-phase controlled rolling on plate mill was presented and its feature is as follows: (1) Determination of holding thickness can be automatically obtained based on the influence of mill safety limits, tracking zone length and holding time on holding thickness; (2) Determination of holding temperature can be automatically obtained and the holding time can be reduced as much as possible; (3) Algorithm can modify the holding temperature and thickness depending on slab size and product size.
基金This study was financially supported by the National Natural Science Foundation of China (No.50504007, No.50474086, and No.50334010).
文摘An integrated metallurgical model was developed for Nb steels to predict the microstructure evolution and mechanical properties during the hot-strip rolling and cooling process. On the basis of the industrial data, the transformation kinetics, strength, and elongation rate were evaluated for different chemical compositions and processing parameters. The yield strength and tensile strength increase with increasing Nb content or decreasing finishing temperature. The bainite distributed in finer ferrite matrix, which is produced at relatively low coiling temperatures, can greatly increase the strength of steel, especially tensile strength, thereby decreasing the yield ratio. A reasonable agreement was found between the predicted and measured results. It indicates that the present models can be used to simulate the actual production process.
基金ItemSponsored by Major State Basic Research Development Programof China (G2000067208-4)
文摘Thermal crown of roll is an important factor, which affects strip profile. It is necessary to analyze the temperature field and thermal crown of roll for hot strip mill. A new simplified finite element method (FEM) was used to analyze the temperature field and thermal crown of roll, and corresponding models were built according to the practical boundary conditions. Transient roll temperature field and thermal crown were simulated by ANSYS FEM software with considering transient thermal contact and complex boundary condition. Temperature and thermal crown variations on roll surface nodes were obtained. The thermal crown results of roll obtained by FEM simulation were in good agreement with the measured data, indicating that simplified FEM models and results were correct.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51902043)the Fundamental Research Funds for the Central Universities(Grant Nos.N2102007,N2102002,and N2202011)This work was also partially supported by the National Natural Science Foundation of China(Grant Nos.51871048 and 52171108).
文摘As an essential renewable mineral resource,mollusk shells can be used as handicrafts,building materials,adsor-bents,etc.However,there are few reports on the wear resistance of their structures.The Vicker’s hardness and friction,and wear resistance of different microstructures in mollusk shells were comparatively studied in the pre-sent work.The hardness of prismatic structures is lower than that of cross-lamellar and nacreous structures.How-ever,the experimental results of sliding tests indicate that the prismatic structure exhibits the best anti-wear ability compared with foliated,crossed-lamellar,and nacreous structures.The anti-wear and hardness do not present a positive correlation,as the wear resistance properties of different microstructures in mollusk shells are governed jointly by organic matrix,structural arrangement,and basic building block actions.The present researchfindings are expected to provide fundamental insight into the design of renewable bionic materials with high wear resistance.
基金the financial supports from the National Natural Science Foundation of China (Key Program,Grant No.50634030)the Program for New Century Excellent Talents in University (Grant No.NCET-06-0285)
文摘A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.