期刊文献+
共找到118篇文章
< 1 2 6 >
每页显示 20 50 100
Spatiotemporal characteristics and driving mechanisms of land use/land cover(LULC)changes in the Jinghe River Basin,China
1
作者 WANG Yinping JIANG Rengui +4 位作者 YANG Mingxiang XIE Jiancang ZHAO Yong LI Fawen LU Xixi 《Journal of Arid Land》 SCIE CSCD 2024年第1期91-109,共19页
Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and... Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB. 展开更多
关键词 land use/land cover(LULC)changes driving mechanisms trajectory analysis geographical detector(Geodetector) Grain for Green Project Jinghe River Basin
下载PDF
Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths
2
作者 Zhi Zheng Hongyu Xu +3 位作者 Kai Zhang Guangliang Feng Qiang Zhang Yufei Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期117-136,共20页
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona... Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads. 展开更多
关键词 True triaxial static and disturbance test Mechanical properties Failure mechanism and precursor Intermittent disturbance effect Fractional mechanical model
下载PDF
In-situ construction of abundant active centers on hierarchically porous carbon electrode toward high-performance phosphate electrosorption: Synergistic effect of electric field and capture sites
3
作者 Peng Zhang Fukuan Li +6 位作者 Mingming He Silu Huo Xueli Zhang Benqiang Cen Dezhi Fang Kexun Li Hao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期126-137,共12页
Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.Howev... Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption. 展开更多
关键词 Electro-assisted adsorption ELECTROSORPTION Phosphate removal Active centers MOF-derived carbon
下载PDF
Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary 被引量:7
4
作者 Hai-bo Yang En-chong Li +1 位作者 Yong Zhao Qiu-hua Liang 《Water Science and Engineering》 EI CAS CSCD 2017年第4期311-319,共9页
Implementation of the water-sediment regulation(WSR) scheme, mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River, has inevitably influenced the sediment distrib... Implementation of the water-sediment regulation(WSR) scheme, mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River, has inevitably influenced the sediment distribution and coastal morphology of the Yellow River Estuary.Using coastline delineation and suspended sediment concentration(SSC) retrieval methods, this study investigated water and sediment changes,identified detailed inter-annual and intra-annual variations of the coastline and SSC in the normal period(NP: 1986-2001, before and after the flood season) and WSR period(WSRP: 2002-2013, before and after WSR). The results indicate that(1) the sedimentation in the low reaches of the Yellow River turned into erosion from 2002 onward;(2) the inter-annual coastline changes could be divided into an accretion stage(1986-1996), a slow erosion stage(1996-2002), and a slow accretion stage(2002-2013);(3) an intra-annual coastline extension occurred in the river mouth in most years of the WSRP; and(4) the mean intra-annual accretion area was 0.789 km^2 in the NP and 4.73 km2 in the WSRP,and the mean SSC increased from 238 mg/L to 293 mg/L in the NP and from 192 mg/L to 264 mg/L in the WSRP. 展开更多
关键词 COASTLINE Suspended SEDIMENT concentration Water-sediment REGULATION REMOTE sensing YELLOW River ESTUARY
下载PDF
Analytical solutions of turbulent boundary layer beneath forward-leaning waves
5
作者 Yiqin XIE Jifu ZHOU +3 位作者 Xu WANG Jinlong DUAN Yongjun LU Shouqian LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期695-710,共16页
As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteris... As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteristics of the boundary layer beneath forward-leaning waves accurately,especially for the turbulent boundary layer.In this work,the linearized turbulent boundary layer model with a linear turbulent viscosity coefficient is applied,and the novel expression of the near-bed orbital velocity that has been worked out by the authors for forward-leaning waves of arbitrary forward-leaning degrees is further used to specify the free stream boundary condition of the bottom boundary layer.Then,a variable transformation is found so as to make the equation of the turbulent boundary layer model be solved analytically through a modified Bessel function.Consequently,an explicit analytical solution of the turbulent boundary layer beneath forward-leaning waves is derived by means of variable separation and variable transformation.The analytical solutions of the velocity profile and bottom shear stress of the turbulent boundary layer beneath forward-leaning waves are verified by comparing the present analytical results with typical experimental data available in the previous literature. 展开更多
关键词 forward-leaning wave turbulent boundary layer velocity profile bottom shear stress
下载PDF
Critical thresholds for stage division of water erosion process in different ridge systems in mollisol region of Northeast China
6
作者 JIAO Jian QIN Wei +3 位作者 LI Kun-heng XU Hai-chao YIN Zhe HOU Shu-yan 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1540-1560,共21页
Extreme rainfall events on a slope under ridge tillage systems cause concentrated stream soil loss.To analyse the critical thresholds for different stages of water erosion process of ridge systems,simulated rainfall-e... Extreme rainfall events on a slope under ridge tillage systems cause concentrated stream soil loss.To analyse the critical thresholds for different stages of water erosion process of ridge systems,simulated rainfall-erosion experiments for the contour wide ridge(CWR),contour narrow ridge(CNR),longitudinal wide ridge(LWR),and longitudinal narrow ridge(LNR)were conducted under four rainfall intensities,with slope gradients of 3°and 5°.For the runoff event,the runoff depth order was LNR>LWR>CWR>CNR;the soil loss order was CNR>LNR>CWR>LWR.The product of slope factor(S)and rainfall erosivity(R)or runoff depth(D),can be adopted as critical thresholds for different stages of runoff and soil erosion process.For the longitudinal ridge systems,R values were provided for LWR and LNR and were the beginning of sheet flow,whereas the product of rainfall erosivity and slope factor(RS)values were provided for LWR and LNR as the beginning of the accelerated concentrated flow.For the contour ridge systems,R values were provided for CWR and CNR as critical thresholds for the beginning of overflow.The product of runoff depth and slope factor(DS)values were 9.98 and 7.73 mm for CWR and CNR,respectively,and were critical thresholds for the beginning of ridge failure;the DS values were 18.45 and 12.75 mm for CWR and CNR,respectively,and were critical thresholds for the beginning of the formation of ephemeral gully erosion.The critical thresholds can distinguish different stages of soil erosion process modelling. 展开更多
关键词 RUNOFF Soil loss THRESHOLD Ridge failure Artificial rainfall simulation
下载PDF
Coupling analysis of social-economic water consumption and its effects on the arid environments in Xinjiang of China based on the water and ecological footprints 被引量:8
7
作者 ZHANG Pei DENG Mingjiang +5 位作者 LONG Aihua DENG Xiaoya WANG Hao HAI Yang WANG Jie LIU Yundong 《Journal of Arid Land》 SCIE CSCD 2020年第1期73-89,共17页
In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological... In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological footprints can be used to quantitatively evaluate the water consumption of social-economic activities and their influence on the eco-environments.In addition,increase of the water footprint indicates the expansion of artificial oasis,and the influence on the natural oasis could be reflected by the variation of the ecological footprint.This study was conducted to answer a scientific question that what is the quantitative relationship between the expansion of the artificial oasis and the degradation of the natural oasis in the arid environments of Xinjiang,China.Thus,based on the social-economic data,water consumption data and meteorological data during 2001–2015,we calculated the water and ecological footprints to express the human-related pressure exerted on the water resources and arid environments in Xinjiang(including 14 prefectures and cities),and explore the relationship between the water and ecological footprints and its mechanism by using the coupling analysis and Granger causality test.The results show that both the water and ecological footprints of Xinjiang increased significantly during 2001–2015,and the increasing rate of the ecological footprint was much faster than that of the water footprint.The coupling degree between the water and ecological footprints was relatively high at the temporal scale and varied at the spatial scale.Among the 14 prefectures and cities examined in Xinjiang,the greater social-economic development(such as in Karamay and Urumqi)was associated with the lower coupling degree between the two footprints.Increases in the water footprint will cause the ecological footprint to increase,such that a 1-unit increase in the consumption of water resources would lead to 2–3 units of ecological degradation.The quantitative relationship between the increases of the water and ecological footprints,together with the intensities of water consumption both in the natural and artificial oases of Tarim River Basin,have approved the fact that the formation and expansion of 1 unit of the artificial oasis would bring about the degradation of 2 units of the natural oasis.These conclusions not only provide a technical basis for sustainable development in Xinjiang,but also offer a theoretical guide and scientific information that could be used in similar arid areas around the world. 展开更多
关键词 water consumption ecological footprint water footprint Granger causality test natural oasis artificial oasis Tarim River
下载PDF
Spatio-temporal variations of vegetation carbon use efficiency and potential driving meteorological factors in the Yangtze River Basin 被引量:6
8
作者 YE Xu-chun LIU Fu-hong +2 位作者 ZHANG Zeng-xin XU Chong-yu LIU Jia 《Journal of Mountain Science》 SCIE CSCD 2020年第8期1959-1973,共15页
Understanding of the vegetation dynamics is essential for addressing the potential threats of terrestrial ecosystem.In recent years,the vegetation coverage of the Yangtze River Basin(YRB)has increased significantly,ye... Understanding of the vegetation dynamics is essential for addressing the potential threats of terrestrial ecosystem.In recent years,the vegetation coverage of the Yangtze River Basin(YRB)has increased significantly,yet the spatio-temporal variations and potential driving meteorological factors of carbon use efficiency(CUE)under the context of global warming are still not clear.In this study,MODIS-based public-domain data during 2000–2015 was used to analyze these aspects in the YRB,a large river basin with powerful ecological functions in China.Spatio-temporal variations of CUE in different sub-basins and land cover types were investigated and the correlations with potential driving meteorological factors were examined.Results revealed that CUE in the YRB had strong spatiotemporal variability and varied remarkably in different land cover types.For the whole YRB,the average CUE of vegetated land was 0.519,while the long-term change trend of CUE was obscure.Along the rising altitude,CUE generally showed an increasing trend until the altitude of 3900 m and then followed by a decreasing trend.CUE of grasslands was generally higher than that of croplands,and then forest lands.The inter-annual variation of CUE in the YRB is likely to be driven by precipitation as a strong positive partial correlation between the inter-annual variability of CUE and precipitation was observed in most of sub-basins and land cover types in the YRB.The influence of temperature and relative humidity is also outstanding in certain regions and land cover types.Our findings are useful from the view point of carbon cycle and reasonable land cover management under the context of global warming. 展开更多
关键词 Carbon use efficiency Climate variability MODIS ALTITUDE Land cover type PRECIPITATION
下载PDF
Impact of transferred water on the hydrochemistry and water quality of surface water and groundwater in Baiyangdian Lake,North China 被引量:6
9
作者 Yong Zhao Jingyan Han +1 位作者 Bing Zhang Jiaguo Gong 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期104-112,共9页
The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface... The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface water and groundwater.In this study,Baiyangdian Lake was selected as a typical area for extensive groundwater exploration and surface water transfer in the North China Plain.Surface water and groundwater samples were sampled in dry/wet seasons and then analyzed before/after the water transfer,respectively.Generally,surface water and groundwater are extensively hydrologically connected based on hydrochemical evidence.It was found that the hydrochemical composition of the shallow groundwater is affected by the surface water and that the water quality of the deep groundwater is stable.However,inter-aquifer recharge processes from the shallow groundwater to the deep groundwater existed in the anthropogenic region impacted with high nitrate-ion concentrations.Also,the hydrochemical composition of the surface water and groundwater was dominated by rock-weathering and evaporation-precipitation processes.Due to the existence of the deep vadose zone in the alluvial fan,Na^(+)was exchanged into soil matrices during the leakage of the surface water.In addition,the transferred water resulted in surface water with good quality,and it also played as an important recharge source to groundwater.As the most important water resource for irrigation and drinking,deep groundwater should be paid more attention in the alluvial fan with frequent water transfer and extensive groundwater exploration. 展开更多
关键词 Hydrochemical composition Surface water GROUNDWATER Water transfer Baiyangdian Lake
下载PDF
Layout effects and optimization of runoff storage and filtration facilities based on SWMM simulation in a demonstration area 被引量:4
10
作者 Wei Xing Peng Li +3 位作者 Shang-bing Cao Li-li Gan Feng-lin Liu Jian-e Zuo 《Water Science and Engineering》 EI CAS CSCD 2016年第2期115-124,共10页
The layout effects and optimization of runoff storage and filtration facilities are crucial to the efficiency and management of the cost of runoff control, but related research is still lacking. In this study, scenari... The layout effects and optimization of runoff storage and filtration facilities are crucial to the efficiency and management of the cost of runoff control, but related research is still lacking. In this study, scenarios with different layouts were simulated using the storm water management model(SWMM), to investigate the layout effects on control efficiency with different precipitations. In a rainfall event with 50 mm of precipitation in two hours, 1820 scenarios with different layouts of four facilities constructed in 16 sub-catchments were simulated, the reduction rates of internal flow presented a standard deviation of 10.9%, and the difference between the maximum and minimum reduction rates reached59.7%. Based on weighting analysis, an integrated ranking index was obtained and used to determine the optimal layout scenarios considering different rainfall events. In the optimal scenario(storage and filtration facilities constructed in sub-catchments 14, 12, 7, and 2), the reduction rates of the total outflow reached 31.4%, 26.4%, and 14.7%, respectively, with 30, 50, and 80 mm of precipitation. The reduction rate of the internal outflow reached 95% with 50 mm of precipitation and approximately 56% with 80 mm of precipitation. 展开更多
关键词 Layout Optimization RAINWATER storage POND STORMWATER control STORM water management model (SWMM)
下载PDF
Effects of Drip System Uniformity and Irrigation Amount on Water and Salt Distributions in Soil Under Arid Conditions 被引量:3
11
作者 GUAN Hong-jie LI Jiu-sheng LI Yan-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第5期924-939,共16页
The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices ... The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices of drip system uniformity and irrigation amount. In the experiments, three Christiansen uniformity coefficients (CU) of approximately 65, 80, and 95% (referred to as low, medium, and high uniformity, respectively) and three irrigation amounts of 50, 75, and 100% of full irrigation were used. The distribution of the soil water content and bulk electrical conductivity (ECb) was monitored continuously with approximately equally spaced frequency domain reflectometry (FDR) sensors located along a dripline. Gravimetric samples of soil were collected regularly to determine the distribution of soil salinity. A great fluctuation in CU of water content and ECb at 60 cm depth was observed for the low uniformity treatment during the irrigation season, while a relatively stable variation pattern was observed for the high uniformity treatment. The ECb CU was substantially lower than the water content CU and its value was greatly related to the water content CU and the initial ECb CU. The spatial variation of seasonal mean soil water content and seasonal mean soil bulk electrical conductivity showed a high dependence on the variation pattern of emitter discharge rate along a dripline for the low and medium uniformity treatments. A greater irrigation amount produced a significantly lower soil salinity at the end of the irrigation season, while the influence of the system uniformity on the soil salinity was insignificant at a probability level of 0.1. In arid regions, the determination of the target drip irrigation system uniformity should consider the potential salinity risk of soil caused by nonuniform water application as the influence of the system uniformity on the distribution of the soil salinity was progressively strengthened during the growing season of crop. 展开更多
关键词 drip irrigation UNIFORMITY soil water content soil bulk electrical conductivity soil salinity
下载PDF
Numerical Simulation of Breaking Wave Generated Sediment Suspension and Transport Process Based on CLSVOF Algorithm 被引量:3
12
作者 卢新华 张小峰 +1 位作者 陆俊卿 董炳江 《China Ocean Engineering》 SCIE EI CSCD 2014年第5期701-712,共12页
The sediment suspension and transport process under complex breaking wave situation is investigated using large eddy simulation (abbreviated as LES hereafter) method. The coupled level set (LS) and volume of fluid (VO... The sediment suspension and transport process under complex breaking wave situation is investigated using large eddy simulation (abbreviated as LES hereafter) method. The coupled level set (LS) and volume of fluid (VOF) method is used to accurately capture the evolution of air-water interface. The wall effect at the bottom is modeled based on the wave friction term while the complicate bottom boundary condition for sediment is tackled using Chou and Fringer's sediment erosion and deposition flux method. A simulation is carried out to study the sediment suspension and transport process under periodic plunging breaking waves. The comparison between the results by CLSVOF method and those obtained by the LS method is given. It shows that the latter performs as well as the CLSVOF method in the pre-breaking weak-surface deformation situation. However, a serious mass conservation problem in the later stages of wave breaking makes it inappropriate for this study by use of the LS method and thus the CLSVOF method is suggested. The flow field and the distribution of suspended sediment concentration are then analyzed in detail. At the early stage of breaking, the sediment is mainly concentrated near the bottom area. During the wave breaking process, when the entrapped large-scale air bubble travels downward to approach the bottom, strong shear is induced and the sediment is highly entrained. 展开更多
关键词 sediment suspension wave breaking subgrid-scale model CLSVOF level set
下载PDF
Glacier variations and their response to climate change in an arid inland river basin of Northwest China 被引量:2
13
作者 ZHOU Zuhao HAN Ning +5 位作者 LIU Jiajia YAN Ziqi XU Chongyu CAI Jingya SHANGYizi ZHU Jiasong 《Journal of Arid Land》 SCIE CSCD 2020年第3期357-373,共17页
Glaciers are a critical freshwater resource of river recharge in arid areas around the world.In recent decades,glaciers have shown evidence of retreat due to climate change,and the accelerated ablation of glaciers and... Glaciers are a critical freshwater resource of river recharge in arid areas around the world.In recent decades,glaciers have shown evidence of retreat due to climate change,and the accelerated ablation of glaciers and associated impacts on water resources have received widespread attention.Glacier variations result from climate change,so they can serve as an indicator of climate change.Considering the climatic differences in different elevation ranges,it is worthwhile to explore whether different responses exist between glacier area and air temperature in each elevation zone.In this study,we selected a typical arid inland river basin(Sugan Lake Basin)in the western Qilian Mountains of Northwest China to analyze the glacier variations and their response to climate change.The glacier area data from 1989 to 2016 were delineated using Landsat Thematic Mapper(TM),Enhanced TM+(ETM+)and Operational Land Imager(OLI)images.We compared the relationships between glacier area and air temperature at seven meteorological stations in the glacier-covered areas and in the Sugan Lake Basin,and further analyzed the relationship between glacier area and mean air temperature of the glacier surfaces in July–August in the elevation range of 4700–5500 m a.s.l.by the linear regression method and correlation analysis.In addition,based on the linear regression relationship established between glacier area and air temperature in each elevation zone,we predicted glacier areas under future climate scenarios during the periods of 2046–2065 and 2081–2100.The results indicate that the glaciers experienced a remarkable shrinkage from 1989 to 2016 with a shrinkage rate of–1.61 km^2/a(–0.5%/a),and the rising temperature is the decisive factor dominating glacial retreat;there is a significant negative linear correlation between glacier area and mean air temperature of the glacier surfaces in July–August in each elevation zone from 1989 to 2016.The variations in glaciers are far less sensitive to changes in precipitation than to changes in air temperature.Due to the influence of climate and topographic conditions,the distribution of glacier area and the rate of glacier ablation first increased and then decreased in different elevation zones.The trend in glacier shrinkage will continue because air temperature will continue to increase in the future,and the result of glacier retreat in each elevation zone will be slightly slower than that in the entire study area.Quantitative glacier research can more accurately reflect the response of glacier variations to climate change,and the regression relationship can be used to predict the areas of glaciers under future climate scenarios.These conclusions can offer effective references for assessing glacier variations and their response to climate change in arid inland river basins in Northwest China as well as other similar regions in the world. 展开更多
关键词 glacier variations climate change glacier area remote sensing regression relationship elevation zone Qilian Mountains
下载PDF
Simulation of water and nitrogen dynamics as affected by drip fertigation strategies 被引量:8
14
作者 ZHANG Jian-jun LI Jiu-sheng +1 位作者 ZHAO Bing-qiang LI Yan-ting 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2434-2445,共12页
The aim of drip fertigation is synchronising the application of water and nutrients with crop requirements, and maintaining the proper concentration and distribution of nutrient and water in the soil. The wetting patt... The aim of drip fertigation is synchronising the application of water and nutrients with crop requirements, and maintaining the proper concentration and distribution of nutrient and water in the soil. The wetting patterns and nutrient distributions under drip fertigation have been proved to be closely related to the fertigation strategies. In order to find out the critical factors that affect the nutrient distribution under different drip fertigaiton strategies, a computer simulation model HYDRUS2D/3D was used to simulate the water and nitrate distribution for various fertigation strategies from a surface point source. Simulation results were compared with the observed ones from our previous studies. A 15° wedge-shaped plexiglass container was used in our experiment to represent one-twenty-fourth of the complete cylinder. The height of container is 40 cm, and the radius is 41 cm. The ammonium nitrate solution was added through a no. 7 needle connected to a Mariotte tube with a flexible hose. The soil water content, nitrate and ammonium concentrations were measured. The comparison of simulated and observed data demonstrated that the model performed reliably. The numerical analysis for various fertigation strategies from a surface point source showed that:(1) The total amount of irrigation water, the concentration of the fertilizer solution and the amount of pure water used to flush the pipeline after fertilizer solution application are the three critical factors influencing the distribution of water and fertilizer nitrogen in the soil.(2) The fresh water irrigation duration prior to fertigation has no obvious effect on nitrate distribution. The longer flushing time period after fertigation resulted in nitrate accumulation closer to the wetting front. From the point of avoiding the possibility of nitrate loss from the root zone, we recommended that the flushing time period should be as shorter as possible.(3) For a given amount of fertilizer, higher concentration of the fertilizer applied solution reduces the potential of nitrate leaching in drip irrigation system. While, lower concentration of the fertilizer solution resulted in an uniform distribution of nitrate band closer to the wetted front. 展开更多
关键词 fertigation strategy drip irrigation modelling nitrate transport
下载PDF
Climate Trends of Temperature, Precipitation and River Discharge in the Abbay River Basin in Ethiopia
15
作者 Asaminew Abiyu Cherinet Denghua Yan +8 位作者 Hao Wang Xinshan Song Tianlin Qin Mulualem T. Kassa Abel Girma Batsuren Dorjsuren Mohammed Gedefaw Hejia Wang Otgonbayar Yadamjav 《Journal of Water Resource and Protection》 2019年第10期1292-1311,共20页
Projecting future changes of streamflow in the Abby River Basin (ARB) is important for planning and proper management of the basin system. The current study conducted in five stations of the Abbay river basin, and inv... Projecting future changes of streamflow in the Abby River Basin (ARB) is important for planning and proper management of the basin system. The current study conducted in five stations of the Abbay river basin, and investigated the annual temperature, precipitation, and river discharge variability using the Innovative trend analysis method, Mann-Kendall, and Sen’s slope test estimator. The result showed a slightly increasing trend of annual precipitation in Assoa (Z = 0.71), Bahir Dar (Z = 0.13), and Gonder (Z = 0.26) stations, while a significant increasing trend was observed in Nedgo (Z = 2.45) and Motta (Z = 1.06) stations. Interestingly, the trend of annual temperature in Assosa (Z = 5.88), Bahir Dar (Z = 3.87), Gonder (Z = 4.38), Nedgo (Z = 4.77), and Motta (Z = 2.85) was abruptly increased. The average mean temperature has increased by 0.2°C in the past 36 years (1980 to 2016). The extreme high temperature was observed in the semi-dry zone of northern Ethiopia. During the study period, a significant declining trend of the river discharge was recorded, and the river discharge was sharply decreased from 1992 onwards. The results of the current study showed annual variability of river discharge, precipitation, and temperature of the study area of the basin that could be used as a basis for future studies. 展开更多
关键词 Abbay RIVER BASIN Climate Change Ethiopia PRECIPITATION RIVER DISCHARGE TEMPERATURE
下载PDF
Tomato Yield and Quality and Emitter Clogging as Affected by Chlorination Schemes of Drip Irrigation Systems Applying Sewage Effluent 被引量:13
16
作者 LI Jiu-sheng LI Yan-feng ZHANG Hang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第10期1744-1754,共11页
Chlorination has been recognized as an efficient and economically favorable method for treating clogging in drip emitters caused by biological growth during sewage application. Further important criteria for determini... Chlorination has been recognized as an efficient and economically favorable method for treating clogging in drip emitters caused by biological growth during sewage application. Further important criteria for determining an optimal chlorination scheme are the different responses of crops to the chloride added into the soil through chlorination. During two seasons in 2008 and 2009, field experiments were conducted in a solar-heated greenhouse with drip irrigation systems applying secondary sewage effluent to tomato plants to investigate the influences of chlorine injection intervals and levels on plant growth, yield, fruit quality, and emitter clogging. Injection intervals ranging from 2 to 8 wk and injection concentrations ranging 2-50 mg L-1 of free chlorine residual at the end of the laterals were used. For the 2008 experiments, the yield from the treatments of sewage application with chlorination was 7.5% lower than the yield from the treatment of sewage application without chlorination, while the yields for the treatments with and without chlorination were similar for the 2009 experiments. The statistical tests indicated that neither the chlorine injection intervals and concentrations nor the interactions between the two significantly influenced plant height, leaf area, or tomato yield for both years. The qualities of the fruit in response to chlorination were parameter-dependent. Chlorination did not significantly influence the quality of ascorbic acid, soluble sugar, or soluble acids, but the interaction between the chlorine injection interval and the chlorine concentration significantly influenced the levels of soluble solids. It was also confirmed that chlorination was an effective method for reducing biological clogging. These results suggested that chlorination is safe for a crop that has a moderate sensitivity to chlorine, like tomato, and can maintain a high level of performance in drip irrigation systems applying sewage effluent. 展开更多
关键词 CHLORINATION drip irrigation emitter clogging fruit quality TOMATO sewage effluent yield
下载PDF
Variation in water supply leads to different responses of tree growth to warming 被引量:2
17
作者 Pengfei Zheng Dandan Wang +4 位作者 Guodong Jia Xinxiao Yu Ziqiang Liu Yusong Wang Yonge Zhang 《Forest Ecosystems》 SCIE CSCD 2022年第1期23-32,共10页
Background:Global climate change,characterized by changes in precipitation,prolonged growing seasons,and warming-induced water deficits,is putting increased pressure on forest ecosystems globally.Understanding the imp... Background:Global climate change,characterized by changes in precipitation,prolonged growing seasons,and warming-induced water deficits,is putting increased pressure on forest ecosystems globally.Understanding the impact of climate change on drought-prone forests is a key objective in assessing forest responses to climate change.Methods:In this study,we assessed tree growth trends and changes in physiological activity under climate change based on measurements of tree ring and stable isotopes.Additionally,structural equation models were used to identify the climate drivers influencing tree growth for the period 1957–2016.Results:We found that the mean basal area increment decreased first and then increased,while the water use efficiency showed a steady increase.The effects of climate warming on tree growth switched from negative to positive in the period 1957–2016.Adequate water supply,especially snowmelt water available in the early critical period,combined with an earlier arrival of the growing season,allowed to be the key to the reversal of the effects of warming on temperature forests.The analysis of structural equation models(SEM)also demonstrated that the growth response of Pinus tabuliformis to the observed temperature increase was closely related to the increase in water availability.Conclusions:Our study indicates that warming is not the direct cause of forest decline,but does indeed exacerbate droughts,which generally cause forest declines.Water availability at the beginning of the growing season might be critical in the adaptation to rising temperatures in Asia.Temperate forests may be better able to withstand rising temperatures if they have sufficient water,with boosted growth even possible during periods of rising temperatures,thus forming stronger carbon sinks. 展开更多
关键词 Climate change Drought stress Tree rings Stable isotope SNOWMELT Temperate forests
下载PDF
Identification and spatial pattern analysis of alpine timberline by remote sensing methods in Yarlung Zangpo Grand Canyon 被引量:1
18
作者 ZHU Bei WANG Shi-yan +6 位作者 SU Wei CHEN Kai-qi LIU Chang DU Yan-liang WANG Liang HAN Zhen ZOU Jiang-xiang 《Journal of Mountain Science》 SCIE CSCD 2021年第9期2304-2314,共11页
As an important ecotone,the alpine timberline is the boundary between closed-canopy montane forest and alpine vegetation,and is highly sensitive to global and regional climate changes.We provided a way to identify and... As an important ecotone,the alpine timberline is the boundary between closed-canopy montane forest and alpine vegetation,and is highly sensitive to global and regional climate changes.We provided a way to identify and extract the alpine timberline in Yarlung Zangpo Grand Canyon Nature Reserve by using remote sensing data and spatial analysis based on land use/land cover classification and NDVI distribution characteristics.Combining DEM data,the influence of slope and aspect on the distribution of alpine timberline was explored.The results showed that the alpine timberline in Yarlung Zangpo Grand Canyon is transitional timberline,with the upper boundary approximately distributed at the elevation of 3422-4373 m,the lower boundary at approximately 3270-4164 m,with a width of about 110-280 m.Alpine timberline was mainly distributed on steep and very steep slopes ranging from 25°to 45°.The maximum elevation of both the upper and lower boundaries occurred on steep slopes.The distribution of alpine timberline varies with aspects,with sunny slopes having a higher boundary than shady slopes. 展开更多
关键词 Alpine timberline ASPECT Normalized Difference Vegetation Index Remote sensing classification SLOPE
下载PDF
Excluded Volumes of Anisotropic Convex Particles in Heterogeneous Media:Theoretical and Numerical Studies 被引量:1
19
作者 Wenxiang Xu Ganquan Yang +1 位作者 Peng Lan Huaifa Ma 《Computers, Materials & Continua》 SCIE EI 2016年第4期25-40,共16页
Understanding the excluded volume of anisotropic particle is of great importance in the evaluation of continuum percolation and random packing behaviors of soft/hard particle systems in heterogeneous disordered media.... Understanding the excluded volume of anisotropic particle is of great importance in the evaluation of continuum percolation and random packing behaviors of soft/hard particle systems in heterogeneous disordered media.In this work,we obtain the excluded volumes of several anisotropic convex particles including prolate spheroids,oblate spheroids,spherocylinders,and Platonic particles,using theoretical and numerical approaches.According to the second virial coefficient,we first present a theoretical scheme for determining the excluded volumes of anisotropic particles.Also,the mean tangent diameters of anisotropic convex particles are formulated by the quantitative stereology.Subsequently,Monte Carlo simulations are demonstrated to numerically evaluate the excluded volumes.The theoretical results of the dimensionless excluded volume are thereafter compared with that of the numerical results to verify the validity of the theoretical scheme.We further investigate the dependence of the dimensionless excluded volume on the geometric characteristics of anisotropic particles based on the proposed theoretical and numerical schemes.Results show that the dimensionless excluded volume mainly relies on the shape and surface information of anisotropic particles.The developed theoretical and numerical schemes can provide theoretical insights into the percolation threshold and packing density of soft/hard anisotropic particle systems in heterogeneous materials,physics,and chemistry fields. 展开更多
关键词 Excluded volume Convex particle PERCOLATION Random packing Theory Monte carlo simulation
下载PDF
Efficiency and Feasibility of an Integrated Algorithm for Distributed Hydrological M odel Calibration 被引量:1
20
作者 王宇晖 牛瑞华 +3 位作者 韩耀宗 雷晓辉 蒋云钟 宋新山 《Journal of Donghua University(English Edition)》 EI CAS 2013年第4期323-329,共7页
Increasing complexity of distributed hydrological model(DHM)has lowered the efficiency of convergence.In this study,global sensitivity analysis(SA)was introduced by combining multiobjective(MO)optimization for DHM cal... Increasing complexity of distributed hydrological model(DHM)has lowered the efficiency of convergence.In this study,global sensitivity analysis(SA)was introduced by combining multiobjective(MO)optimization for DHM calibration.Latin Hypercube-once at a time(LH-OAT)was adopted in global parameter SA to obtain relative sensitivity of model parameter,which can be categorized into different sensitivity levels.Two comparative study cases were conducted to present the efficiency and feasibility by combining SA with MO(SA-MO).WetSpa model with non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)algorithm and EasyDHM model with multi-objective sequential complex evolutionary metropolis-uncertainty analysis(MOSCEM-UA)algorithm were adopted to demonstrate the general feasibility of combining SA in optimization.Results showed that the LH-OAT was globally effective in selecting high sensitivity parameters.It proves that using parameter from high sensitivity groups results in higher convergence efficiency.Study case I showed a better Pareto front distribution and convergence compared with model calibration without SA.Study case II indicated a more efficient convergence of parameters in sequential evolution of MOSCEM-UA under the same iteration.It indicates that SA-MO is feasible and efficient for high dimensional DHM calibration. 展开更多
关键词 distributed hydrological model(DHM) optimization sensitivity analysis multi-objective(MO) convergence efficiency CALIBRATION
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部