In this paper, an experimental study on SO2 removal by nanosecond rising edge pulse dielectric barrier discharge (DBD) plasma, generated by multi-needle-to-plane electrodes, is carried out. The mechanism of the effe...In this paper, an experimental study on SO2 removal by nanosecond rising edge pulse dielectric barrier discharge (DBD) plasma, generated by multi-needle-to-plane electrodes, is carried out. The mechanism of the effect of various factors, such as gap size between dielectric barrier and discharge needles, environmental humidity, and inlet speed of gas flow upon the removal efficiency of air purification is analyzed. The studies show that SOs removal efficiency improves with the increase in the gap size between dielectric barrier and discharge needles in the case of a fixed space between two electrodes, and also improves with the increase in the environmental humidity. For a mixed gas with a fixed concentration, there is an optimal inlet speed of gas flow, which leads to the best removal efficiency.展开更多
基金the National Science Foundation for Distinguished Young Scholars of China (No.50525722)the Science and Technology research key project of MOE
文摘In this paper, an experimental study on SO2 removal by nanosecond rising edge pulse dielectric barrier discharge (DBD) plasma, generated by multi-needle-to-plane electrodes, is carried out. The mechanism of the effect of various factors, such as gap size between dielectric barrier and discharge needles, environmental humidity, and inlet speed of gas flow upon the removal efficiency of air purification is analyzed. The studies show that SOs removal efficiency improves with the increase in the gap size between dielectric barrier and discharge needles in the case of a fixed space between two electrodes, and also improves with the increase in the environmental humidity. For a mixed gas with a fixed concentration, there is an optimal inlet speed of gas flow, which leads to the best removal efficiency.