Molybdenum(Mo) proxies, including bulk concentration and isotopic composition, have been increasingly used to reconstruct ancient ocean redox states. This study systematically reviews Mo cycles and their accompanying ...Molybdenum(Mo) proxies, including bulk concentration and isotopic composition, have been increasingly used to reconstruct ancient ocean redox states. This study systematically reviews Mo cycles and their accompanying isotopic fractionations in modern ocean as well as their application in paleo-ocean redox reconstruction. Our review indicates that Mo enrichment in sediments mainly records the adsorption of Fe-Mn oxides/hydroxides and chemical bonding of H2 S. Thus, Mo enrichment in anoxic sediments generally reflects the presence of H2 S in the water column or pore waters. In addition to the effect of euxinia, sedimentary Mo enrichment is related to the size of the oceanic Mo reservoir. Given these primary mechanisms for oceanic Mo cycling, Mo abundance data and Mo/TOC ratios acquired from euxinic sediments in geological times show that fluctuations of the oceanic Mo reservoir are well correlated with oxygenation of the atmosphere and oceans and suggest that oxygenation occurred in phases. Mo proxies suggest that Mo isotopes in strongly euxinic sediments reflect the contemporaneous Mo isotopic composition of seawater, but other processes such as iron-manganese(Fe-Mn) adsorption and weak euxinia can result in different fractionations. Diagenesis may complicate Mo enrichment and its isotopic fractionation in sediments. With appropriate constraints on the Mo isotopic composition of seawater and various outputs, a Mo isotope mass-balance model can quantitatively reconstruct global redox conditions over geological history. In summary, Mo proxies can be effectively used to reconstruct oceanic redox conditions on various timescales due to their sensitivity to both local and global marine redox conditions. However, given the complexity of geochemical processes, particularly the effects of diagenesis, further work is required to apply Mo proxies to ancient oceans.展开更多
基金supported by the National Basic Research Program of China(Grant No.2013CB955704)the National Natural Science Fundation of China(Grant No.41172030)
文摘Molybdenum(Mo) proxies, including bulk concentration and isotopic composition, have been increasingly used to reconstruct ancient ocean redox states. This study systematically reviews Mo cycles and their accompanying isotopic fractionations in modern ocean as well as their application in paleo-ocean redox reconstruction. Our review indicates that Mo enrichment in sediments mainly records the adsorption of Fe-Mn oxides/hydroxides and chemical bonding of H2 S. Thus, Mo enrichment in anoxic sediments generally reflects the presence of H2 S in the water column or pore waters. In addition to the effect of euxinia, sedimentary Mo enrichment is related to the size of the oceanic Mo reservoir. Given these primary mechanisms for oceanic Mo cycling, Mo abundance data and Mo/TOC ratios acquired from euxinic sediments in geological times show that fluctuations of the oceanic Mo reservoir are well correlated with oxygenation of the atmosphere and oceans and suggest that oxygenation occurred in phases. Mo proxies suggest that Mo isotopes in strongly euxinic sediments reflect the contemporaneous Mo isotopic composition of seawater, but other processes such as iron-manganese(Fe-Mn) adsorption and weak euxinia can result in different fractionations. Diagenesis may complicate Mo enrichment and its isotopic fractionation in sediments. With appropriate constraints on the Mo isotopic composition of seawater and various outputs, a Mo isotope mass-balance model can quantitatively reconstruct global redox conditions over geological history. In summary, Mo proxies can be effectively used to reconstruct oceanic redox conditions on various timescales due to their sensitivity to both local and global marine redox conditions. However, given the complexity of geochemical processes, particularly the effects of diagenesis, further work is required to apply Mo proxies to ancient oceans.