Discrete element method (DEM) is used in the present paper to simulate the microstructural evolution of a planar layer of copper particles during sintering. Formation of agglomerates and the effect of their rearrang...Discrete element method (DEM) is used in the present paper to simulate the microstructural evolution of a planar layer of copper particles during sintering. Formation of agglomerates and the effect of their rearrangement on densification are mainly focused on. Comparing to the existing experimental observations, we find that agglomerate can form spontaneously in sintering and its rearrangement could accelerate the densification of compacts. Snapshots of numerical simulations agree qualitatively well with experimental observations. The method could be readily extended to investigate the effect of agglomerate on sintering in a three- dimensional model, which should be very useful for understanding the evolution of microstructure of sintering systems.展开更多
Adopting Yoshizawa's two-scale expansion technique, the fluctuating field is expanded around the isotropic field. The renormalization group method is applied for calculating the covariance of the fluctuating field at...Adopting Yoshizawa's two-scale expansion technique, the fluctuating field is expanded around the isotropic field. The renormalization group method is applied for calculating the covariance of the fluctuating field at the lower order expansion. A nonlinear Reynolds stress model is derived and the turbulent constants inside are evaluated analytically. Compared with the two-scale direct interaction approximation analysis for turbulent shear flows proposed by Yoshizawa, the calculation is much more simple. The analytical model presented here is close to the Speziale model, which is widely applied in the numerical simulations for the complex turbulent flows.展开更多
Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application. Two categories of the tension-dominant and curvaturedominant nonlinearities are analyzed. The dynamic non...Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application. Two categories of the tension-dominant and curvaturedominant nonlinearities are analyzed. The dynamic nonlinearity of four beam structures of nanomechanical resonator is quantitatively studied via a dimensional analysis approach. The dimensional analysis shows that for the nanomechanical resonator of tension-dominant nonlinearity, its dynamic nonlinearity decreases monotonically with increasing axial loading and increases monotonically with the increasing aspect ratio of length to thickness; the dynamic nonlinearity can only result in the hardening effects. However, for the nanomechanical resonator of the curvature-dominant nonlinearity, its dynamic nonlinearity is only dependent on axial loading. Compared with the tension-dominant nonlinearity, the curvature-dominant nonlinearity increases monotonically with increasing axial loading; its dynamic nonlinearity展开更多
The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,cau...The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,causing the compression of the transferred interconnects,can provide high elastic stretchability.Recently,the nonbuckling interconnects have been designed,where thick bar replaces thin ribbon layout to yield scissor-like in-plane deformation instead of in-or out-of-plane buckling modes.The nonbuckling interconnect design achieves significantly enhanced stretchability.However,combined use of prestrain and nonbuckling interconnects has not been explored.This paper aims to study the mechanical behavior of nonbuckling interconnects bonded to the prestrained substrate analytically and numerically.It is found that larger prestrain,longer straight segment,and smaller arc radius yield smaller strain in the interconnects.On the other hand,larger prestrain can also cause larger strain in the interconnects after releasing the prestrain.Therefore,the optimization of the prestrain needs to be found to achieve favorable stretchability.展开更多
In this study,a new image-based method for the extraction and characterization of pore-throat network for unconventional hydrocarbon storage and exploitation is proposed.“Pore-throat solidity”,which is analogous to ...In this study,a new image-based method for the extraction and characterization of pore-throat network for unconventional hydrocarbon storage and exploitation is proposed.“Pore-throat solidity”,which is analogous to particle solidity,and a new method for automatic identification of pores and throats in tight sandstone oil reservoirs are introduced.Additionally,the“pore-throat combination”and“pure pore”are defined and distinguished by drawing the cumulative probability curve of the pore-throat solidity and by selecting an appropriate cutoff point.When the discrete grid set is recognized as a pore-throat combination,Legendre ellipse fitting and minimum Feret diameter are used.When the pore and throat grid sets are identified as pure pores,the pore diameter can be directly calculated.Using the new method,the analytical results for the physical parameters and pore radius agree well with most prior studies.The results comparing the maximum ball and the new model could also prove the accuracy of the latter's in micro and nano scales.The new model provides a more practical theoretical basis and a new calculation method for the rapid and accurate evaluation of the complex processes of oil migration.展开更多
Boson peak of glasses,a THz vibrational excess compared to Debye squared-frequency law,remains mysterious in condensed-matter physics and material science.It appears in many different kinds of glassy matters and is al...Boson peak of glasses,a THz vibrational excess compared to Debye squared-frequency law,remains mysterious in condensed-matter physics and material science.It appears in many different kinds of glassy matters and is also argued to exist in damped crystals.A consensus is that boson peak originates from the coupling of the(quasi)-localized non-phonon modes and the plane-wave-like phonon modes,but the coupling behavior is still not fully understood.In this paper,by modulating the content of localized modes and the frequencies of phonon modes,the coupling is clearly reflected in the localization and anharmonicity of low-frequency vibrational modes.The coupling enhances with increasing cooling rate and sample size.For finite sample size,phonon modes do not fully intrude into the low frequency to form a dense spectrum and they are not sufficiently coupled to the localized modes,thus there is no Debye level and boson peak is ill-defined.This suggestion remains valid in the presence of thermal motions induced by temperature,even though the anharmonicity comes into play.Our results point to the coupling of quasi-localized and phonon modes and its relation to the boson peak.展开更多
Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate...Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL.展开更多
Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boun...Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boundary(IB)method developed in our previous work.For the moving structure modeled using the sharp interface IB method,a recursive box method is developed for efficiently classifying the background grid nodes.For the particles modeled using the diffuse interface IB method,a‘master-slave’approach is adopted.For the particle-particle interaction(PPI)and particle-structure interaction(PSI),a fast algorithm for classifying the active and inactive Lagrangian points,which discretize the particle surface,is developed for the‘dry’contact approach.The results show that the proposed recursive box method can reduce the classifying time from 52seconds to 0.3 seconds.Acceptable parallel efficiency is obtained for cases with different particle concentrations.Furthermore,the lubrication model is utilized when a particle approaches a wall,enabling an accurate simulation of the rebounding phenomena in the benchmark particle-wall collision problem.At last,the capability of the proposed computational framework is demonstrated by simulating particle-laden turbulent channel flows with rough walls.展开更多
To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the str...To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the stress-magnetism coupling model is established through meticulous theoretical derivation.The controllable QZS interval is constructed via parameter design and magnetic control,effectively segregating the high static stiffness bearing section from the QZS vibration isolation section.Furthermore,a displacement control scheme utilizing a magnetic force is proposed to regulate entry into the QZS working range for the vibration isolation platform.Experimental results demonstrate that the operation within this QZS region reduces the peak-to-peak acceleration signal by approximately 66.7%compared with the operation outside this region,thereby significantly improving the low frequency performance of the QZS vibration isolator.展开更多
Sustainable monitoring of sea ice is crucial for better understanding air-ice-ocean interactions and identifying new processes.However,it is an expensive process particularly for the polar cryosphere environment.The s...Sustainable monitoring of sea ice is crucial for better understanding air-ice-ocean interactions and identifying new processes.However,it is an expensive process particularly for the polar cryosphere environment.The seasonal ice-covered sea area can be used as a test bed for cryosphere-related process studies due to convenient access and conduction of field work,and the seasonal regime variation of the Arctic sea ice resulting from climate changes.In this paper,a small landfast sea ice monitoring program has been carried out for four consecutive seasons at Jiangjunshi Port,the Bohai Sea,North China,analyzing the temperature and salinity of air,ice and ocean and discussing the influence on mechanical properties.The effect of air temperature on sea ice temperature is focused.During low-temperature periods,the maximum correlation coefficient between air temperature and ice temperature,along with temperature fluctuation within ice,decreases as ice depth increases.Ice salinity was measured using ice core sampling and ice crumb sampling,with ice crumb salinity twice larger compared to ice core sampling when the ice temperature is−3℃.Ice salinity variations with ice temperature and the salinity profiles were fitted.Analysis of the profiles of under-ice seawater salinity reveals the presence of a high-salinity layer near the bottom of sea ice during the initial stage of sea ice growth.Based on the dynamic changes in sea ice temperature and sea ice salinity,this study evaluates the mechanical properties of sea ice,with the fitting determination coefficients of the obtained parameterized formulas significantly better than those reported in current research.展开更多
Evaporation of sessile water droplet on polydimethylsiloxane (PDMS) surfaces with three different curing ratios (5:1, 10:1, and 20:1) was experimentally investigated in this paper. We show that the constant con...Evaporation of sessile water droplet on polydimethylsiloxane (PDMS) surfaces with three different curing ratios (5:1, 10:1, and 20:1) was experimentally investigated in this paper. We show that the constant contact radius (CCR) evaporation on surface with high curing ratio lasts longer than that with low curing ratio. We also measured Young's moduli of PDMS films by using atomic force microscopy (AFM) and simulated surface deformation of PDMS films induced by sessile water droplet. With increasing curing ratio of PDMS film, Young's modulus of PDMS film is getting lower, and then there will be larger surface deformation and more elastic stored energy. Since such energy acts as a barrier to keep the three-phase contact line pinned, thus it will result in longer CCR evaporation on PDMS surface with higher curing ratio.展开更多
The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation.Underwater acoustic signals in water entry are extensively measured at about 30 different positions ...The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation.Underwater acoustic signals in water entry are extensively measured at about 30 different positions by using a PVDF needle hydrophone.From the measurements we obtain (1)the primary shock wave caused by the impact of the blunt body on free surface;(2)the vapor pressure inside the cavity;(3)the secondary shock wave caused by pulling away of the cavity from free surface;and so on.The supercavitation induced by the blunt body is observed by using a digital high-speed video camera as well as the single shot photography.The periodic and 3 dimensional motion of the supercavitation is revealed.The experiment is carried out at room temperature.展开更多
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ...A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.展开更多
The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usuall...The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usually predefined.However,BWR is a critical structural parameter that tremendously affects the dynamic behaviour of not only the tunnel tube itself but also the cable system.In the context of a SFT prototype(SFTP) project in Qiandao Lake(Zhejiang Province,China),the importance of BWR is illustrated by finite element analysis and subsequently,an optimized BWR is proposed within a reasonable range in the present study.In the numerical model,structural damping is identified to be of importance.Rayleigh damping and the corresponding Rayleigh coefficients are attained through a sensitivity study,which shows that the adopted damping ratios are fairly suitable for SFTP.Lastly,the human sense of security is considered by quantifying the comfort index,which helps further optimize BWR in the SFTP structural parameter design.展开更多
This paper aims at investigating the size-dependent self-buckling and bending behaviors of nano plates through incorporating surface elasticity into the elasticity with residual stress fields. In the absence of extern...This paper aims at investigating the size-dependent self-buckling and bending behaviors of nano plates through incorporating surface elasticity into the elasticity with residual stress fields. In the absence of external loading, positive surface tension induces a compressive residual stress field in the bulk of the nano plate and there may be self-equilibrium states corresponding to the plate self-buckling. The self-instability of nano plates is investigated and the critical self-instability size of simply supported rectangular nano plates is determined. In addition, the residual stress field in the bulk of the nano plate is usually neglected in the existing literatures, where the elastic response of the bulk is often described by the classical Hooke's law. The present paper considered the effect of the residual stress in the bulk induced by surface tension and adopted the elasticity with residual stress fields to study the bending behaviors of nano plates without buckling. The present results show that the surface effects only modify the coefficients in corresponding equations of the classical Kirchhoff plate theory.展开更多
In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in ...In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.展开更多
Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These s...Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers.展开更多
Detailed investigations on the microstructure and the mechanical properties of the wing membrane of the dragonfly are carried out. It is found that in the direction of the thickness the membrane was divided into three...Detailed investigations on the microstructure and the mechanical properties of the wing membrane of the dragonfly are carried out. It is found that in the direction of the thickness the membrane was divided into three layers rather than a single entity as traditionally considered, and on the surfaces the membrane displays a random distribution rough microstructure that is composed of numerous nanometer scale columns coated by the cuticle wax secreted. The characteristics of the surface structure are measured and described. The mechanical properties of the membranes taken separately from the wings of live and dead dragonflies are investigated by the nanoindentation technique. The Young's moduli obtained here are approximately two times greater than the previous result, and the reasons that yield the difference are discussed.展开更多
A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the ...A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0x 105, An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries. The adaptive mesh refinement is utilized to resolve the flows near the hull, The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion, The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model, The present simulation captures the essential features of the vortex structures near the hull and in the wake, Both of the time-averaged pressure coefficients and srreamwise velocity profiles obtained from the LES are consistent with the characteristics of the flows pass an appended axisymmetric body. The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles.展开更多
An improved electromechanical model of the RF MEMS(radio frequency microelec- tromechanical systems)switches is introduced,in which the effects of intrinsic residual stress from fabrication processes,axial stress due ...An improved electromechanical model of the RF MEMS(radio frequency microelec- tromechanical systems)switches is introduced,in which the effects of intrinsic residual stress from fabrication processes,axial stress due to stretching of beam,and fringing field are taken into account. Four dimensionless numbers are derived from the governing equation of the developed model.A semi- analytical method is developed to calculate the behavior of the RF MEMS switches.Subsequently the influence of the material and geometry parameters on the behavior of the structure is analyzed and compared,and the corresponding analysis with the dimensionless numbers is conducted too.The quantitative relationship between the presented parameters and the critical pull-in voltage is obtained, and the relative importance of those parameters is given.展开更多
基金supported by the National Natural Science Foundation of China (10972220, 11125211 and 11021262)973 Project(2012CB937500)
文摘Discrete element method (DEM) is used in the present paper to simulate the microstructural evolution of a planar layer of copper particles during sintering. Formation of agglomerates and the effect of their rearrangement on densification are mainly focused on. Comparing to the existing experimental observations, we find that agglomerate can form spontaneously in sintering and its rearrangement could accelerate the densification of compacts. Snapshots of numerical simulations agree qualitatively well with experimental observations. The method could be readily extended to investigate the effect of agglomerate on sintering in a three- dimensional model, which should be very useful for understanding the evolution of microstructure of sintering systems.
基金Supported by the National Natural Science Foundation of China under Grant No 10472115, the Programme for New Century Excellent Talents in University of China, and the Opening Project of the State Key Laboratory of Nonlinear Mechanics.
文摘Adopting Yoshizawa's two-scale expansion technique, the fluctuating field is expanded around the isotropic field. The renormalization group method is applied for calculating the covariance of the fluctuating field at the lower order expansion. A nonlinear Reynolds stress model is derived and the turbulent constants inside are evaluated analytically. Compared with the two-scale direct interaction approximation analysis for turbulent shear flows proposed by Yoshizawa, the calculation is much more simple. The analytical model presented here is close to the Speziale model, which is widely applied in the numerical simulations for the complex turbulent flows.
基金supported by the National Natural Science Foundation of China (10721202 and 11023001)the Chinese Academy of Sciences (KJCX2-EW-L03)
文摘Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application. Two categories of the tension-dominant and curvaturedominant nonlinearities are analyzed. The dynamic nonlinearity of four beam structures of nanomechanical resonator is quantitatively studied via a dimensional analysis approach. The dimensional analysis shows that for the nanomechanical resonator of tension-dominant nonlinearity, its dynamic nonlinearity decreases monotonically with increasing axial loading and increases monotonically with the increasing aspect ratio of length to thickness; the dynamic nonlinearity can only result in the hardening effects. However, for the nanomechanical resonator of the curvature-dominant nonlinearity, its dynamic nonlinearity is only dependent on axial loading. Compared with the tension-dominant nonlinearity, the curvature-dominant nonlinearity increases monotonically with increasing axial loading; its dynamic nonlinearity
文摘The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,causing the compression of the transferred interconnects,can provide high elastic stretchability.Recently,the nonbuckling interconnects have been designed,where thick bar replaces thin ribbon layout to yield scissor-like in-plane deformation instead of in-or out-of-plane buckling modes.The nonbuckling interconnect design achieves significantly enhanced stretchability.However,combined use of prestrain and nonbuckling interconnects has not been explored.This paper aims to study the mechanical behavior of nonbuckling interconnects bonded to the prestrained substrate analytically and numerically.It is found that larger prestrain,longer straight segment,and smaller arc radius yield smaller strain in the interconnects.On the other hand,larger prestrain can also cause larger strain in the interconnects after releasing the prestrain.Therefore,the optimization of the prestrain needs to be found to achieve favorable stretchability.
基金jointly supported by Beijing Natural Science Foundation(No.8232054)Young Elite Scientists Sponsorship Program by CAST(No.YESS20220094)+2 种基金Young Elite Scientists Sponsorship Program by BAST(No.BYESS2023182)Youth Innovation Promotion Association CAS(No.2023021)National Natural Science Foundation of China(No.41902132)。
文摘In this study,a new image-based method for the extraction and characterization of pore-throat network for unconventional hydrocarbon storage and exploitation is proposed.“Pore-throat solidity”,which is analogous to particle solidity,and a new method for automatic identification of pores and throats in tight sandstone oil reservoirs are introduced.Additionally,the“pore-throat combination”and“pure pore”are defined and distinguished by drawing the cumulative probability curve of the pore-throat solidity and by selecting an appropriate cutoff point.When the discrete grid set is recognized as a pore-throat combination,Legendre ellipse fitting and minimum Feret diameter are used.When the pore and throat grid sets are identified as pure pores,the pore diameter can be directly calculated.Using the new method,the analytical results for the physical parameters and pore radius agree well with most prior studies.The results comparing the maximum ball and the new model could also prove the accuracy of the latter's in micro and nano scales.The new model provides a more practical theoretical basis and a new calculation method for the rapid and accurate evaluation of the complex processes of oil migration.
基金Project supported by the National Outstanding Youth Science Fund Project(Grant No.12125206)the Fund from the Basic Science Center for“Multiscale Problems in Nonlinear Mechanics”(Grant No.11988102)the General Project of the National Natural Science Foundation of China(Grant No.11972345)。
文摘Boson peak of glasses,a THz vibrational excess compared to Debye squared-frequency law,remains mysterious in condensed-matter physics and material science.It appears in many different kinds of glassy matters and is also argued to exist in damped crystals.A consensus is that boson peak originates from the coupling of the(quasi)-localized non-phonon modes and the plane-wave-like phonon modes,but the coupling behavior is still not fully understood.In this paper,by modulating the content of localized modes and the frequencies of phonon modes,the coupling is clearly reflected in the localization and anharmonicity of low-frequency vibrational modes.The coupling enhances with increasing cooling rate and sample size.For finite sample size,phonon modes do not fully intrude into the low frequency to form a dense spectrum and they are not sufficiently coupled to the localized modes,thus there is no Debye level and boson peak is ill-defined.This suggestion remains valid in the presence of thermal motions induced by temperature,even though the anharmonicity comes into play.Our results point to the coupling of quasi-localized and phonon modes and its relation to the boson peak.
基金supported by the NSFC Basic Science Center Program for"Multi-scale Problems in Nonlinear Mechanics" (Grant No.11988102)the NSFC (Grant Nos.U2141204,12172367)+2 种基金the Key Research Program of the Chinese Academy of Sciences (Grant No.ZDRW-CN-2021-2-3)the National Key Research and Development Program of China (Grant No.2022YFC3320504-02)the opening project of State Key Laboratory of Explosion Science and Technology (Grant No.KFJJ21-01 and No.KFJJ18-14 M)。
文摘Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL.
基金Project supported by the National Natural Science Foundation of China(Nos.12202456 and12172360)the Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”of the National Natural Science Foundation of China(No.11988102)the China Postdoctoral Science Foundation(No.2021M693241)。
文摘Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boundary(IB)method developed in our previous work.For the moving structure modeled using the sharp interface IB method,a recursive box method is developed for efficiently classifying the background grid nodes.For the particles modeled using the diffuse interface IB method,a‘master-slave’approach is adopted.For the particle-particle interaction(PPI)and particle-structure interaction(PSI),a fast algorithm for classifying the active and inactive Lagrangian points,which discretize the particle surface,is developed for the‘dry’contact approach.The results show that the proposed recursive box method can reduce the classifying time from 52seconds to 0.3 seconds.Acceptable parallel efficiency is obtained for cases with different particle concentrations.Furthermore,the lubrication model is utilized when a particle approaches a wall,enabling an accurate simulation of the rebounding phenomena in the benchmark particle-wall collision problem.At last,the capability of the proposed computational framework is demonstrated by simulating particle-laden turbulent channel flows with rough walls.
基金Project supported by the National Natural Science Foundation of China(Nos.12372187,52321003,12302250)the Fundamental Research Funds for the Central Universities(Nos.KY2090000094 and WK2480000010)+2 种基金the Fellowship of China Postdoctoral Science Foundation(Nos.2024M753103 and 2023M733388)the University Synergy Innovation Program of Anhui Province(No.GXXT-2023-024)the CAS Talent Introduction Program(No.KJ2090007006)。
文摘To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the stress-magnetism coupling model is established through meticulous theoretical derivation.The controllable QZS interval is constructed via parameter design and magnetic control,effectively segregating the high static stiffness bearing section from the QZS vibration isolation section.Furthermore,a displacement control scheme utilizing a magnetic force is proposed to regulate entry into the QZS working range for the vibration isolation platform.Experimental results demonstrate that the operation within this QZS region reduces the peak-to-peak acceleration signal by approximately 66.7%compared with the operation outside this region,thereby significantly improving the low frequency performance of the QZS vibration isolator.
基金supported by the National Natural Science Foundation of China(Grant nos.42206221 and 42077445)Academy of Finland under contract 31799.
文摘Sustainable monitoring of sea ice is crucial for better understanding air-ice-ocean interactions and identifying new processes.However,it is an expensive process particularly for the polar cryosphere environment.The seasonal ice-covered sea area can be used as a test bed for cryosphere-related process studies due to convenient access and conduction of field work,and the seasonal regime variation of the Arctic sea ice resulting from climate changes.In this paper,a small landfast sea ice monitoring program has been carried out for four consecutive seasons at Jiangjunshi Port,the Bohai Sea,North China,analyzing the temperature and salinity of air,ice and ocean and discussing the influence on mechanical properties.The effect of air temperature on sea ice temperature is focused.During low-temperature periods,the maximum correlation coefficient between air temperature and ice temperature,along with temperature fluctuation within ice,decreases as ice depth increases.Ice salinity was measured using ice core sampling and ice crumb sampling,with ice crumb salinity twice larger compared to ice core sampling when the ice temperature is−3℃.Ice salinity variations with ice temperature and the salinity profiles were fitted.Analysis of the profiles of under-ice seawater salinity reveals the presence of a high-salinity layer near the bottom of sea ice during the initial stage of sea ice growth.Based on the dynamic changes in sea ice temperature and sea ice salinity,this study evaluates the mechanical properties of sea ice,with the fitting determination coefficients of the obtained parameterized formulas significantly better than those reported in current research.
基金supported by the National Natural Science Foundation of China(11002051,11072244,and 11372313)the Key Research Program of the Chinese Academy of Sciences(KJZDEW-M01)the Instrument Developing Project of the Chinese Academy of Sciences(Y2010031)
文摘Evaporation of sessile water droplet on polydimethylsiloxane (PDMS) surfaces with three different curing ratios (5:1, 10:1, and 20:1) was experimentally investigated in this paper. We show that the constant contact radius (CCR) evaporation on surface with high curing ratio lasts longer than that with low curing ratio. We also measured Young's moduli of PDMS films by using atomic force microscopy (AFM) and simulated surface deformation of PDMS films induced by sessile water droplet. With increasing curing ratio of PDMS film, Young's modulus of PDMS film is getting lower, and then there will be larger surface deformation and more elastic stored energy. Since such energy acts as a barrier to keep the three-phase contact line pinned, thus it will result in longer CCR evaporation on PDMS surface with higher curing ratio.
基金The project supported by the "BaiRen Plan" of Chinese Academy of Sciences
文摘The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation.Underwater acoustic signals in water entry are extensively measured at about 30 different positions by using a PVDF needle hydrophone.From the measurements we obtain (1)the primary shock wave caused by the impact of the blunt body on free surface;(2)the vapor pressure inside the cavity;(3)the secondary shock wave caused by pulling away of the cavity from free surface;and so on.The supercavitation induced by the blunt body is observed by using a digital high-speed video camera as well as the single shot photography.The periodic and 3 dimensional motion of the supercavitation is revealed.The experiment is carried out at room temperature.
基金Project supported by the National Natural Science Foundation of China(Nos.91752118,11672305,11232011,and 11572331)the Strategic Priority Research Program(No.XDB22040104)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSWSYS002)
文摘A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.
文摘The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usually predefined.However,BWR is a critical structural parameter that tremendously affects the dynamic behaviour of not only the tunnel tube itself but also the cable system.In the context of a SFT prototype(SFTP) project in Qiandao Lake(Zhejiang Province,China),the importance of BWR is illustrated by finite element analysis and subsequently,an optimized BWR is proposed within a reasonable range in the present study.In the numerical model,structural damping is identified to be of importance.Rayleigh damping and the corresponding Rayleigh coefficients are attained through a sensitivity study,which shows that the adopted damping ratios are fairly suitable for SFTP.Lastly,the human sense of security is considered by quantifying the comfort index,which helps further optimize BWR in the SFTP structural parameter design.
基金supported by the National Basic Research Program of China (973 Program,Grant No 2007CB310500)the National High-tech R&D Program of China (863 Program,Grant No 2007AA04Z348)+1 种基金the National Natural Science Foundation of China (NSFC,Grant No 10772180)the Post doctoral Science Foundation of China (Grant No 20080440530)
文摘This paper aims at investigating the size-dependent self-buckling and bending behaviors of nano plates through incorporating surface elasticity into the elasticity with residual stress fields. In the absence of external loading, positive surface tension induces a compressive residual stress field in the bulk of the nano plate and there may be self-equilibrium states corresponding to the plate self-buckling. The self-instability of nano plates is investigated and the critical self-instability size of simply supported rectangular nano plates is determined. In addition, the residual stress field in the bulk of the nano plate is usually neglected in the existing literatures, where the elastic response of the bulk is often described by the classical Hooke's law. The present paper considered the effect of the residual stress in the bulk induced by surface tension and adopted the elasticity with residual stress fields to study the bending behaviors of nano plates without buckling. The present results show that the surface effects only modify the coefficients in corresponding equations of the classical Kirchhoff plate theory.
基金supported by the National Basic Research Program of China (Grant 2012CB937500)the National Natural Science Foundations of China (Grants 11172304 and 11202210)
文摘In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.
基金supported by the Chinese Academy of Sciences (Grants KJCX-SW-L08, KJCX3-SYW-S01)the National Natural Science Foundation of China (Grants 11021262, 11023001, 11232011, 11372331)
文摘Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers.
基金The project supported by the National Natural Science Foundation of China(10372102 and 10672164)
文摘Detailed investigations on the microstructure and the mechanical properties of the wing membrane of the dragonfly are carried out. It is found that in the direction of the thickness the membrane was divided into three layers rather than a single entity as traditionally considered, and on the surfaces the membrane displays a random distribution rough microstructure that is composed of numerous nanometer scale columns coated by the cuticle wax secreted. The characteristics of the surface structure are measured and described. The mechanical properties of the membranes taken separately from the wings of live and dead dragonflies are investigated by the nanoindentation technique. The Young's moduli obtained here are approximately two times greater than the previous result, and the reasons that yield the difference are discussed.
基金supported by the National Natural Science Foundation of China (11302238, 11232011. and 11572331)support from the Strategic Priority Research Program (XDB22040104)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDJ-SSW-SYS002)the National Basic Research Program of China (973 Program 2013CB834100: Nonlinear science)
文摘A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0x 105, An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries. The adaptive mesh refinement is utilized to resolve the flows near the hull, The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion, The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model, The present simulation captures the essential features of the vortex structures near the hull and in the wake, Both of the time-averaged pressure coefficients and srreamwise velocity profiles obtained from the LES are consistent with the characteristics of the flows pass an appended axisymmetric body. The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles.
基金The project supported by the National Natural Science Foundation of China,the Chinese Academy of Sciences,the RGC/NSFC Joint Research Scheme (N-HKUST 601/01)the Joint Laboratory of Microsystems
文摘An improved electromechanical model of the RF MEMS(radio frequency microelec- tromechanical systems)switches is introduced,in which the effects of intrinsic residual stress from fabrication processes,axial stress due to stretching of beam,and fringing field are taken into account. Four dimensionless numbers are derived from the governing equation of the developed model.A semi- analytical method is developed to calculate the behavior of the RF MEMS switches.Subsequently the influence of the material and geometry parameters on the behavior of the structure is analyzed and compared,and the corresponding analysis with the dimensionless numbers is conducted too.The quantitative relationship between the presented parameters and the critical pull-in voltage is obtained, and the relative importance of those parameters is given.