We numerically investigate the high-order harmonic generation with two-colour optical field, taking into consideration the propagation effects. Some harmonics can be dramatically enhanced at a certain delay between th...We numerically investigate the high-order harmonic generation with two-colour optical field, taking into consideration the propagation effects. Some harmonics can be dramatically enhanced at a certain delay between the fundamental pulse and its second harmonics. Choice of the enhanced harmonics can be realised by changing the time delay between the two laser pulses.展开更多
The influence of vacuum polarization effects on the interactions of multiple ultra-intense lasers with plasmas is discussed. The nonlinear paraxial monochromatic model of the interactions has been improved by consider...The influence of vacuum polarization effects on the interactions of multiple ultra-intense lasers with plasmas is discussed. The nonlinear paraxial monochromatic model of the interactions has been improved by considering the Heisenberg–Euler Lagrangian density of two laser processes. Comparing the corrections of vacuum polarization effects in the collision of laser beams with one generated by a single intense laser, we find that the former has a higher order of magnitude correction. The laser collision also produces variations in the propagation direction and polarization direction of the lasers propagating in the plasma. In addition, the strong-field quantum electrodynamic(QED) effects can be enhanced by increasing the laser intensity or frequency difference, or by adjusting the incident angles of the two laser beams.展开更多
In this work, characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids are investigated by means of a newlydeveloped particle-in-cell (PIC) simulation code. The PIC code takes advantage ...In this work, characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids are investigated by means of a newlydeveloped particle-in-cell (PIC) simulation code. The PIC code takes advantage of the recently developed ionization and collision dynamicsmodels, which make it possible to model different types of materials based on their intrinsic atomic properties. Within the simulations, bothbremsstrahlung and nonlinear Compton scatterings have been included. Different target materials and laser intensities are considered forstudying the parameter-dependent features of X/γ-ray radiations. The relative strength and angular distributions of X/γ ray productions frombremsstrahlung and nonlinear Compton scatterings are compared to each other. The threshold under which the nonlinear Compton scatteringsbecome dominant over bremsstrahlung is also outlined.展开更多
We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasib...We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasibility for diverse applications.By utilizing a stacked acceleration structure and far-infrared laser technology,we are able to achieve a seven-stage acceleration structure that surpasses the distance and energy gain of using the previous dielectric laser acceleration methods.Additionally,we are able to compress the positron beam to an ultrafast sub-femtosecond scale during the acceleration process,compared with the traditional methods,the positron beam is compressed to a greater extent.We also demonstrate the robustness of the stacked acceleration structure through the successful acceleration of the positron beam.展开更多
The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides c...The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides conventional laser technology,photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses.Here,we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength.The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse.Owing to its relatively long wavelength,the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble.Consequently,the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths.This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.展开更多
When positronium is generated in super intense laser fields irradiated by an intense laser field, it breaks up into an electron and a positron. The momentum of the electron as well as that of the positron depends on t...When positronium is generated in super intense laser fields irradiated by an intense laser field, it breaks up into an electron and a positron. The momentum of the electron as well as that of the positron depends on the relative direction with respect to the laser propagation. Thus, the photoelectron angular distributions show inversion asymmetry. The inversion asymmetry becomes notable for higher kinetic energy of electrons.展开更多
We theoretically study the field-free molecular orientation induced by a three-color laser field. The three-color laser field with a large asymmetric degree can effectively enhance the molecular orientation. In partic...We theoretically study the field-free molecular orientation induced by a three-color laser field. The three-color laser field with a large asymmetric degree can effectively enhance the molecular orientation. In particular, when the intensity ratio of the three-color laser field is tuned to a proper value of I3: I2: I1= 0.09 : 0.5 : 1, the molecular orientation can be improved by - 20% compared with that of the two-color laser field at intensity ratio I2: I1= 1 : 1 for the same total laser intensity of 2×10^13W/cm^2. Moreover, we investigate the effect of the carrier-envelope phase(CEP) on the molecular orientation and use the asymmetric degree of the laser field to explain the result. We also show the influences of the laser intensity, rotational temperature, and pulse duration on the molecular orientation. These results are meaningful for the theoretical and experimental studies on the molecular orientation.展开更多
Near-infrared to visible upconversion luminescence was observed in a multicomponent silicate (BK7) glass containing Ce^3 + ions under focused infrared femtosecond laser irradiation. The emission spectra show that t...Near-infrared to visible upconversion luminescence was observed in a multicomponent silicate (BK7) glass containing Ce^3 + ions under focused infrared femtosecond laser irradiation. The emission spectra show that the upconversion luminescence comes from the 4f-5d transition of the Ce^3 + ions. The relationship between the intensity of the Ce^3 + emission and the pump power reveals that a three-photon absorption predominates in the conversion process from the near-infrared into the blue luminescence. The analysis of the upconversion mechanism suggests that the upconversion luminescence may come from a three-photon simultaneous absorption that leads to a population of the 5d level in which the characteristic luminescence occurs.展开更多
Protons with very high kinetic energy of about lOkeV and the saturation effect of proton energy for laser intensity have been observed in the interaction of an ultrashort intense laser pulse with large-sized hydrogen ...Protons with very high kinetic energy of about lOkeV and the saturation effect of proton energy for laser intensity have been observed in the interaction of an ultrashort intense laser pulse with large-sized hydrogen dusters. Including the cluster-size distribution as well as the laser-intensity distribution on the focus spot, the theoretical calculations based on a simplified Coulomb explosion model have been compared with our experimental measurements, which are in good agreement with each other.展开更多
An all-fiber mode-locked fiber laser was achieved with a saturable absorber based on a tapered fiber deposited with layered molybdenum selenide(MoSe_2). The laser was operated at a central wavelength of 1558.35 nm wit...An all-fiber mode-locked fiber laser was achieved with a saturable absorber based on a tapered fiber deposited with layered molybdenum selenide(MoSe_2). The laser was operated at a central wavelength of 1558.35 nm with an output spectral width of 2.9 nm, and a pulse repetition rate of 16.33 MHz. To the best of our knowledge, this is the first report on mode-locked fiber lasers using MoSe_2 saturable absorbers based on tapered fibers.展开更多
Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such ...Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such reactions,using eight laser beams with the third harmonic impacting on a deuterated polyethylene target at the ShenGuang-II Upgrade laser facility.This work focused on the application of range-filter(RF)spectrometers,assembled from a 70 lm aluminum filter and two CR-39 nuclear track detectors,to measure the yields of primary DD-protons.Based on the track diameter calibration results of 3 MeV protons used to diagnose the tracks on the RF spectrometers,an approximate primary DD-proton yield of(8.5±1.7)×10^6 was obtained,consistent with the yields from similar laser facilities worldwide.This indicates that the RF spectrometer is an effective way to measure primary DD-protons.However,due to the low yields of D^3He-protons and its small track diameter,CR-39 detectors were unable to distinguish it from the background spots.Using other accurate detectors may help to measure these rare events.展开更多
This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)n) in a gas jet subjected to intense femtoseeond laser pulses (170 mJ, 70 fs) have led ...This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)n) in a gas jet subjected to intense femtoseeond laser pulses (170 mJ, 70 fs) have led to table-top laser driven DD nuclear fusion. The clusters produced in supersonic expansion had an average size of about 5 nm in radius and the laser intensity used was 3 × 10^17 W/cm^2.The measured maximum and average energies of deuterons produced in the laser-cluster interaction were 60 and 13.5 keV, respectively. Prom DD collisions of energetic deuterons, a yield of 2.5(±0.4) × 10^4 fusion neutrons of 2.45 MeV per shot was realized, giving rise to a neutron production efficiency of about 1.5 × 10^5 per joule of incident laser pulse energy. Theoretical calculations were performed and a fairly good agreement of the calculated neutron yield with that obtained from the present experiment was found.展开更多
This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250kHz. For a linearly polarize...This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250kHz. For a linearly polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was promoted. The period of self-organization structures is about 180 nm. The grating orientation is adjusted by the laser polarization direction. A long range Bragglike grating is formed by moving the sample at a speed of 10μm/s. For a circularly polarized laser beam, uniform spherical nanoparticles were formed as a result of Coulomb explosion during the interaction of near-infrared laser with ZnO crystal.展开更多
Using a nonperturbative quantum electrodynamics theory of high-order harmonic generation (HHG), a scaling law of HHG is established. The scaling law states that when the atomic binding energy Eb, the wavelength ), ...Using a nonperturbative quantum electrodynamics theory of high-order harmonic generation (HHG), a scaling law of HHG is established. The scaling law states that when the atomic binding energy Eb, the wavelength ), and the intensity I of the laser field change simultaneously to kEb, λ/k, and k3I, respectively. The characteristics of the HHG spectrum remain unchanged, while the harmonic yield is enhanced k3 times. That HHG obeys the same scaling law with above-threshold ionization is a solid proof of the fact that the two physical processes have similar physical mechanisms. The variation of integrated harmonic yields is also discussed.展开更多
The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa...The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 × 10^16W/cm^2 laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.展开更多
The effect of the laser spot size on the neutron yield of table-top nuclear fusion from explosions of a femtosecond intense laser pulse heated deuterium clusters is investigated by using a simplified model, in which t...The effect of the laser spot size on the neutron yield of table-top nuclear fusion from explosions of a femtosecond intense laser pulse heated deuterium clusters is investigated by using a simplified model, in which the cluster size distribution and the energy attenuation of the laser as it propagates through the cluster jet are taken into account. It has been found that there exists a proper laser spot size for the maximum fusion neutron yield for a given laser pulse and a specific deuterium gas cluster jet. The proper spot size, which is dependent on the laser parameters and the cluster jet parameters, has been calculated and compared with the available experimental data. A reasonable agreement between the calculated results and the published experimental results is found.展开更多
The phase conjugation between the deformable mirror and the wavefront sensor in the aberration correction of a terawatt Ti:sapphire laser is studied experimentally and theoretically in this paper. At varying values o...The phase conjugation between the deformable mirror and the wavefront sensor in the aberration correction of a terawatt Ti:sapphire laser is studied experimentally and theoretically in this paper. At varying values of phase- conjugation precision, we focus the corresponding beams into spots of the same size of 5.1 μm × 5.3 μm with a f/4 parabola in the 32 TW/36 fs Ti:sapphire laser system. The results show that the precision of conjugation can induce an intensity modulation but does not significantly affect the wavefront correction.展开更多
A novel high-birefringence photonic crystal fiber (HB-PCF) with two zero-dispersion wavelengths (ZDWs) is designed, and an extraordinarily high modal birefringence of 1.56×10-2 is obtained at pump wavelength ...A novel high-birefringence photonic crystal fiber (HB-PCF) with two zero-dispersion wavelengths (ZDWs) is designed, and an extraordinarily high modal birefringence of 1.56×10-2 is obtained at pump wavelength λp=1850nm. With the designed HB-PCF, the effect of the pump parameters on the modulation instability (MI) in the anomalous dispersion region close to the second ZDWs of the HB-PCF is comprehensively studied in this work. A broadband and tunable optical amplification is achieved by controlling the pump power and the pump wavelength based on the combined operation of Raman effect and cross phase modulation. By optimizing the pump parameters, the amplification bandwidth along the fiber slow axis reaches 152 nm for the pump power Pp=280W and the pump wavelength λp=1675nm, while the gain bandwidth along the fiber fast axis is 165 nm for the pump power Pp=600W and the pump wavelength λp=1818nm.展开更多
We propose to achieve far-field super-resolution imaging by using offset two-color one-photon(2C1P)excitation of reversible photoactivatable fluorescence proteins.Due to the distinctive photoswitching performance of t...We propose to achieve far-field super-resolution imaging by using offset two-color one-photon(2C1P)excitation of reversible photoactivatable fluorescence proteins.Due to the distinctive photoswitching performance of the proteins,such as dronpa,the fluorescence emission will only come from the overlapped region of activation beam and excitation beam.The analysis solution of rate equation shows that the resolution of offset 2C1P microscope is"engineered"by laser power of excitation and activation beams and the power ratio between them.Superior lateral and transverse resolution is theoretically demonstrated compared with conventional fluorescence scanning microscopy.展开更多
The ordinary differential magnetic field line equations are solved numerically; the tokamak magnetic structure is studied on Hefei Tokamak-7 Upgrade (HT-TU) when the equilibrium field with a monotonic q-profile is p...The ordinary differential magnetic field line equations are solved numerically; the tokamak magnetic structure is studied on Hefei Tokamak-7 Upgrade (HT-TU) when the equilibrium field with a monotonic q-profile is perturbed by a helical magnetic field. We find that a single mode (m, n) helical perturbation can cause the formation of islands on rational surfaces with q=m/n and q=(m±1,±2,±3,...)/n due to the toroidicity and plasma shape (i.e. elongation and triangularity), while there are many undestroyed magnetic surfaces called Kolmogorov-Arnold-Moser (KAM) barriers on irrational surfaces. The islands on the same rational surface do not have the same size. When the ratio between the perturbing magnetic field Br(r) and the toroidal magnetic field amplitude Bφ0 is large enough, the magnetic island chains on different rational surfaces will overlap and chaotic orbits appear in the overlapping area, and the magnetic field becomes stochastic. It is remarkable that the stochastic layer appears first in the plasma edge region.展开更多
基金Project supported by Chinese Academy of Sciences,the National Natural Science Foundation (Grant Nos. 10734080,10523003,60921004,10904157,and 60978012)973 Project (Grant No. 2006CB806000)Shanghai Commission of Science and Technology(Grant Nos. 06DZ22015 and 07PJ14091)
文摘We numerically investigate the high-order harmonic generation with two-colour optical field, taking into consideration the propagation effects. Some harmonics can be dramatically enhanced at a certain delay between the fundamental pulse and its second harmonics. Choice of the enhanced harmonics can be realised by changing the time delay between the two laser pulses.
基金supported by the National Natural Science Foundation of China (Grant No. 11805117)the Shanghai Leading Academic Discipline Project (Grant No. S30105)。
文摘The influence of vacuum polarization effects on the interactions of multiple ultra-intense lasers with plasmas is discussed. The nonlinear paraxial monochromatic model of the interactions has been improved by considering the Heisenberg–Euler Lagrangian density of two laser processes. Comparing the corrections of vacuum polarization effects in the collision of laser beams with one generated by a single intense laser, we find that the former has a higher order of magnitude correction. The laser collision also produces variations in the propagation direction and polarization direction of the lasers propagating in the plasma. In addition, the strong-field quantum electrodynamic(QED) effects can be enhanced by increasing the laser intensity or frequency difference, or by adjusting the incident angles of the two laser beams.
基金This work was supported by Science Challenge Project(No.TZ2016005)National Natural Science Foundation of China(No.11605269,11674341 and 11675245)National Basic Research Program of China(Grant No.2013CBA01504).
文摘In this work, characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids are investigated by means of a newlydeveloped particle-in-cell (PIC) simulation code. The PIC code takes advantage of the recently developed ionization and collision dynamicsmodels, which make it possible to model different types of materials based on their intrinsic atomic properties. Within the simulations, bothbremsstrahlung and nonlinear Compton scatterings have been included. Different target materials and laser intensities are considered forstudying the parameter-dependent features of X/γ-ray radiations. The relative strength and angular distributions of X/γ ray productions frombremsstrahlung and nonlinear Compton scatterings are compared to each other. The threshold under which the nonlinear Compton scatteringsbecome dominant over bremsstrahlung is also outlined.
基金supported by the National Natural Science Foundation of China(Grant No.11975214).
文摘We present a first on-chip positron accelerator based on dielectric laser acceleration.This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus,enhancing its feasibility for diverse applications.By utilizing a stacked acceleration structure and far-infrared laser technology,we are able to achieve a seven-stage acceleration structure that surpasses the distance and energy gain of using the previous dielectric laser acceleration methods.Additionally,we are able to compress the positron beam to an ultrafast sub-femtosecond scale during the acceleration process,compared with the traditional methods,the positron beam is compressed to a greater extent.We also demonstrate the robustness of the stacked acceleration structure through the successful acceleration of the positron beam.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11975154,12375236,12135009,and 12275249)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050100)。
文摘The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides conventional laser technology,photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses.Here,we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength.The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse.Owing to its relatively long wavelength,the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble.Consequently,the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths.This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.
基金Supported by the National Natural Science Foundation of China under Grant No 10774153, the National Basic Research Program of China, and the Shanghai Rising-Star Program.
文摘When positronium is generated in super intense laser fields irradiated by an intense laser field, it breaks up into an electron and a positron. The momentum of the electron as well as that of the positron depends on the relative direction with respect to the laser propagation. Thus, the photoelectron angular distributions show inversion asymmetry. The inversion asymmetry becomes notable for higher kinetic energy of electrons.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61221064,61078037,11134010,61205208,and 61521093)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB16)the International S&T Cooperation Program of China(Grant No.2016YFE0119300)
文摘We theoretically study the field-free molecular orientation induced by a three-color laser field. The three-color laser field with a large asymmetric degree can effectively enhance the molecular orientation. In particular, when the intensity ratio of the three-color laser field is tuned to a proper value of I3: I2: I1= 0.09 : 0.5 : 1, the molecular orientation can be improved by - 20% compared with that of the two-color laser field at intensity ratio I2: I1= 1 : 1 for the same total laser intensity of 2×10^13W/cm^2. Moreover, we investigate the effect of the carrier-envelope phase(CEP) on the molecular orientation and use the asymmetric degree of the laser field to explain the result. We also show the influences of the laser intensity, rotational temperature, and pulse duration on the molecular orientation. These results are meaningful for the theoretical and experimental studies on the molecular orientation.
基金Project supported bythe National Natural Science Foundation of China (50125258 and 60377040)
文摘Near-infrared to visible upconversion luminescence was observed in a multicomponent silicate (BK7) glass containing Ce^3 + ions under focused infrared femtosecond laser irradiation. The emission spectra show that the upconversion luminescence comes from the 4f-5d transition of the Ce^3 + ions. The relationship between the intensity of the Ce^3 + emission and the pump power reveals that a three-photon absorption predominates in the conversion process from the near-infrared into the blue luminescence. The analysis of the upconversion mechanism suggests that the upconversion luminescence may come from a three-photon simultaneous absorption that leads to a population of the 5d level in which the characteristic luminescence occurs.
基金Supported by the National Natural Science Foundation of China under Grant No 10535070.
文摘Protons with very high kinetic energy of about lOkeV and the saturation effect of proton energy for laser intensity have been observed in the interaction of an ultrashort intense laser pulse with large-sized hydrogen dusters. Including the cluster-size distribution as well as the laser-intensity distribution on the focus spot, the theoretical calculations based on a simplified Coulomb explosion model have been compared with our experimental measurements, which are in good agreement with each other.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB0504500)the National Natural Science Foundation of China(Grant Nos.61475171,61705244,61307056,and 61875052)the Natural Science Foundation of Shanghai,China(Grant Nos.17ZR1433900 and17ZR1434200)
文摘An all-fiber mode-locked fiber laser was achieved with a saturable absorber based on a tapered fiber deposited with layered molybdenum selenide(MoSe_2). The laser was operated at a central wavelength of 1558.35 nm with an output spectral width of 2.9 nm, and a pulse repetition rate of 16.33 MHz. To the best of our knowledge, this is the first report on mode-locked fiber lasers using MoSe_2 saturable absorbers based on tapered fibers.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB160203)the National Natural Science Foundation of China(Nos.11875311 and 11421505).
文摘Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such reactions,using eight laser beams with the third harmonic impacting on a deuterated polyethylene target at the ShenGuang-II Upgrade laser facility.This work focused on the application of range-filter(RF)spectrometers,assembled from a 70 lm aluminum filter and two CR-39 nuclear track detectors,to measure the yields of primary DD-protons.Based on the track diameter calibration results of 3 MeV protons used to diagnose the tracks on the RF spectrometers,an approximate primary DD-proton yield of(8.5±1.7)×10^6 was obtained,consistent with the yields from similar laser facilities worldwide.This indicates that the RF spectrometer is an effective way to measure primary DD-protons.However,due to the low yields of D^3He-protons and its small track diameter,CR-39 detectors were unable to distinguish it from the background spots.Using other accurate detectors may help to measure these rare events.
基金supported by the National Basic Research Program of China (Grant No 2006CB806000)the National Natural Science Foundation of China (Grant No 10535070)
文摘This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)n) in a gas jet subjected to intense femtoseeond laser pulses (170 mJ, 70 fs) have led to table-top laser driven DD nuclear fusion. The clusters produced in supersonic expansion had an average size of about 5 nm in radius and the laser intensity used was 3 × 10^17 W/cm^2.The measured maximum and average energies of deuterons produced in the laser-cluster interaction were 60 and 13.5 keV, respectively. Prom DD collisions of energetic deuterons, a yield of 2.5(±0.4) × 10^4 fusion neutrons of 2.45 MeV per shot was realized, giving rise to a neutron production efficiency of about 1.5 × 10^5 per joule of incident laser pulse energy. Theoretical calculations were performed and a fairly good agreement of the calculated neutron yield with that obtained from the present experiment was found.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No T0104)the Shanghai Nano-technology Promotion Center and Science & Technology of Shanghai Municipality (Grant No 0652nm005)Innovation Fund of Shanghai University,China
文摘This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250kHz. For a linearly polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was promoted. The period of self-organization structures is about 180 nm. The grating orientation is adjusted by the laser polarization direction. A long range Bragglike grating is formed by moving the sample at a speed of 10μm/s. For a circularly polarized laser beam, uniform spherical nanoparticles were formed as a result of Coulomb explosion during the interaction of near-infrared laser with ZnO crystal.
基金supported by the National Natural Science Foundation of China (Grant Nos.10774153 and 61078080)the National Basic Research Program of China (Grant Nos.2010CB923203 and 2011CB808103)
文摘Using a nonperturbative quantum electrodynamics theory of high-order harmonic generation (HHG), a scaling law of HHG is established. The scaling law states that when the atomic binding energy Eb, the wavelength ), and the intensity I of the laser field change simultaneously to kEb, λ/k, and k3I, respectively. The characteristics of the HHG spectrum remain unchanged, while the harmonic yield is enhanced k3 times. That HHG obeys the same scaling law with above-threshold ionization is a solid proof of the fact that the two physical processes have similar physical mechanisms. The variation of integrated harmonic yields is also discussed.
文摘The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 × 10^16W/cm^2 laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB806000)the National Natural Science Foundation of China (Grant No 10535070)
文摘The effect of the laser spot size on the neutron yield of table-top nuclear fusion from explosions of a femtosecond intense laser pulse heated deuterium clusters is investigated by using a simplified model, in which the cluster size distribution and the energy attenuation of the laser as it propagates through the cluster jet are taken into account. It has been found that there exists a proper laser spot size for the maximum fusion neutron yield for a given laser pulse and a specific deuterium gas cluster jet. The proper spot size, which is dependent on the laser parameters and the cluster jet parameters, has been calculated and compared with the available experimental data. A reasonable agreement between the calculated results and the published experimental results is found.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB808101)the National Natural Science Foundation of China(Grant No.60921004)
文摘The phase conjugation between the deformable mirror and the wavefront sensor in the aberration correction of a terawatt Ti:sapphire laser is studied experimentally and theoretically in this paper. At varying values of phase- conjugation precision, we focus the corresponding beams into spots of the same size of 5.1 μm × 5.3 μm with a f/4 parabola in the 32 TW/36 fs Ti:sapphire laser system. The results show that the precision of conjugation can induce an intensity modulation but does not significantly affect the wavefront correction.
基金the National Natural Science Foundation of China(Grant No.11226148)the Scientific Research Foundation of Zhejiang Province,China(Grant No.LY12F05006)the Education Department Foundation of Zhejiang Province,China(Grant No.Y201121906)
文摘A novel high-birefringence photonic crystal fiber (HB-PCF) with two zero-dispersion wavelengths (ZDWs) is designed, and an extraordinarily high modal birefringence of 1.56×10-2 is obtained at pump wavelength λp=1850nm. With the designed HB-PCF, the effect of the pump parameters on the modulation instability (MI) in the anomalous dispersion region close to the second ZDWs of the HB-PCF is comprehensively studied in this work. A broadband and tunable optical amplification is achieved by controlling the pump power and the pump wavelength based on the combined operation of Raman effect and cross phase modulation. By optimizing the pump parameters, the amplification bandwidth along the fiber slow axis reaches 152 nm for the pump power Pp=280W and the pump wavelength λp=1675nm, while the gain bandwidth along the fiber fast axis is 165 nm for the pump power Pp=600W and the pump wavelength λp=1818nm.
基金Supported by the National Natural Science Foundation of China(No 10804116).
文摘We propose to achieve far-field super-resolution imaging by using offset two-color one-photon(2C1P)excitation of reversible photoactivatable fluorescence proteins.Due to the distinctive photoswitching performance of the proteins,such as dronpa,the fluorescence emission will only come from the overlapped region of activation beam and excitation beam.The analysis solution of rate equation shows that the resolution of offset 2C1P microscope is"engineered"by laser power of excitation and activation beams and the power ratio between them.Superior lateral and transverse resolution is theoretically demonstrated compared with conventional fluorescence scanning microscopy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10405030 and 10135020).
文摘The ordinary differential magnetic field line equations are solved numerically; the tokamak magnetic structure is studied on Hefei Tokamak-7 Upgrade (HT-TU) when the equilibrium field with a monotonic q-profile is perturbed by a helical magnetic field. We find that a single mode (m, n) helical perturbation can cause the formation of islands on rational surfaces with q=m/n and q=(m±1,±2,±3,...)/n due to the toroidicity and plasma shape (i.e. elongation and triangularity), while there are many undestroyed magnetic surfaces called Kolmogorov-Arnold-Moser (KAM) barriers on irrational surfaces. The islands on the same rational surface do not have the same size. When the ratio between the perturbing magnetic field Br(r) and the toroidal magnetic field amplitude Bφ0 is large enough, the magnetic island chains on different rational surfaces will overlap and chaotic orbits appear in the overlapping area, and the magnetic field becomes stochastic. It is remarkable that the stochastic layer appears first in the plasma edge region.