期刊文献+
共找到287篇文章
< 1 2 15 >
每页显示 20 50 100
Snap-through behaviors and nonlinear vibrations of a bistable composite laminated cantilever shell:an experimental and numerical study 被引量:2
1
作者 Lele REN Wei ZHANG +1 位作者 Ting DONG Yufei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期779-794,共16页
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.... The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell. 展开更多
关键词 bistable composite laminated cantilever shell snap-through behavior nonlinear vibration nonlinear stiffness characteristic chaos and bifurcation
下载PDF
Analytical modeling of piezoelectric meta-beams with unidirectional circuit for broadband vibration attenuation
2
作者 Jiawei MAO Hao GAO +2 位作者 Junzhe ZHU Penglin GAO Yegao QU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1665-1684,共20页
Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectr... Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectric meta-beam with unidirectional electric circuits,exhibiting promising broadband attenuation capabilities.An analytical model in a closed form for achieving the solution of unidirectional vibration transmission of the designed meta-beam is developed based on the state-space transfer function method.The method can analyze the forward and backward vibration transmission of the piezoelectric meta-beam in a unified manner,providing reliable dynamics solutions of the beam.The analytical results indicate that the meta-beam effectively reduces the unidirectional vibration across a broad low-frequency range,which is also verified by the solutions obtained from finite element analyses.The designed meta-beam and the proposed analytical method facilitate a comprehensive investigation into the distinctive unidirectional transmission behavior and superb broadband vibration attenuation performance. 展开更多
关键词 broadband vibration attenuation efficient closed-form analytical solution electromechanical coupling piezoelectric material vibration control
下载PDF
Theoretical and Experimental Research of High-Static-Low Dynamic Torsional Vibration Isolator for Ship Shafting
3
作者 LI Lin-tao LU Jia-zhong +2 位作者 YANG Zhi-rong XIAO Wang-qiang RAO Zhu-shi 《船舶力学》 EI CSCD 北大核心 2024年第12期1970-1982,共13页
High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate tor... High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting. 展开更多
关键词 ship shafting high-static-low-dynamic stiffness torsional vibration isolator
下载PDF
Parametric characteristic of the random vibration response of nonlinear systems 被引量:2
4
作者 Xing-Jian Dong Zhi-Ke Peng +2 位作者 Wen-Ming Zhang Guang Meng Fu-Lei Chu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第2期267-283,共17页
Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of nonlinear engineering systems and structures that can be represented by a Volterra series model.In the present... Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of nonlinear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density(PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model. 展开更多
关键词 Volterra series·Nonlinear system·Random vibration·Power spectrum density·Generalized frequency response functions
下载PDF
Multi-blade rubbing characteristics of the shaft-disk-blade-casing system with large rotation
5
作者 Zhiyuan WU Linchuan ZHAO +3 位作者 Han YAN Ge YAN Ao CHEN Wenming ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期111-136,共26页
Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the b... Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the blade, while some only consider the whirl of the rotor, neglecting its spin. To address these limitations, this paper proposes a dynamic model with large rotation for the SDBC system. The model incorporates the spin and whirl of the rotor, enabling the realistic reproduction of multiblade rubbing faults. To verify the accuracy of the SDBC model with large rotation and demonstrate its capability to effectively consider the rotational effects such as the centrifugal stiffening and gyroscopic effects, the natural characteristics and dynamic responses of the proposed model are compared with those obtained from reported research and experimental results. Furthermore, the effects of the rotating speed, contact stiffness,and blade number on the dynamic characteristics of the SDBC system with multi-blade rubbing are investigated. The results indicate that the phase angle between the rotor deflection and the unbalance excitation force increases with the increasing rotating speed,which significantly influences the rubbing penetration of each blade. The natural frequency of the SDBC system with rubbing constrain can be observed in the acceleration response of the casing and the torsional response of the shaft, and the frequency is related to the contact stiffness. Moreover, the vibration amplitude increases significantly with the product of the blade number under rubbing, and the rotating frequency approaches the natural frequency of the SDBC system. The proposed model can provide valuable insight for the fault diagnosis of rubbing in bladed rotating machinery. 展开更多
关键词 shaft-disk-blade-casing(SDBC) large rotation spin and whirl multi-blade rubbing rotational effect
下载PDF
Sufficient variable selection of high dimensional nonparametric nonlinear systems based on Fourier spectrum of density-weighted derivative
6
作者 Bing SUN Changming CHENG +1 位作者 Qiaoyan CAI Zhike PENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第11期2011-2022,共12页
The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,howeve... The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,however,identifying whether a variable contributes or not is not easy.Therefore,based on the Fourier spectrum of densityweighted derivative,one novel variable selection approach is developed,which does not suffer from the dimensionality curse and improves the identification accuracy.Furthermore,a necessary and sufficient condition for testing a variable whether it contributes or not is provided.The proposed approach does not require strong assumptions on the distribution,such as elliptical distribution.The simulation study verifies the effectiveness of the novel variable selection algorithm. 展开更多
关键词 nonlinear system identification variable selection Fourier spectrum non-parametric nonlinear system
下载PDF
Femtosecond laser-induced nanoparticle implantation into flexible substrate for sensitive and reusable microfluidics SERS detection
7
作者 Yongxiang Hu Yu Zhou +2 位作者 Guohu Luo Dege Li Minni Qu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期262-274,共13页
Surface-enhanced Raman spectroscopy(SERS)microfluidic system,which enables rapid detection of chemical and biological analytes,offers an effective platform to monitor various food contaminants and disease diagnoses.Th... Surface-enhanced Raman spectroscopy(SERS)microfluidic system,which enables rapid detection of chemical and biological analytes,offers an effective platform to monitor various food contaminants and disease diagnoses.The efficacy of SERS microfluidic systems is greatly dependent on the sensitivity and reusability of SERS detection substrates to ensure repeated use for prolonged periods.This study proposed a novel process of femtosecond laser nanoparticle array(NPA)implantation to achieve homogeneous forward transfer of gold NPA on a flexible polymer film and accurately integrated it within microfluidic chips for SERS detection.The implanted Au-NPA strips show a remarkable electromagnetic field enhancement with the factor of 9×108 during SERS detection of malachite green(MG)solution,achieving a detection limit lower than 10 ppt,far better than most laser-prepared SERS substrates.Furthermore,Au-NPA strips show excellent reusability after several physical and chemical cleaning,because of the robust embedment of laser-implanted NPA in flexible substrates.To demonstrate the performance of Au-NPA,a SERS microfluidic system is built to monitor the online oxidation reaction between MG/NaClO reactants,which helps infer the reaction path.The proposed method of nanoparticle implantation is more effective than the direct laser structuring technique.It provides better performance for SERS detection,robustness of detection,and substrate flexibility and has a wider range of applications for microfluidic systems without any negative impact. 展开更多
关键词 femtosecond laser-induced transfer nanoparticle array surface-enhanced Raman spectrum microfluidic system
下载PDF
Experimental investigation on vibration characteristics of sandwich beams with magnetorheological elastomers cores 被引量:2
8
作者 魏克湘 孟光 +1 位作者 张文明 朱石沙 《Journal of Central South University》 SCIE EI CAS 2008年第S1期239-242,共4页
A sandwich beam specimen was fabricated by treating with MR elastomers between two thin aluminum face-plates.Experiment was carried out to investigate the vibration responses of the sandwich beam with respect to the i... A sandwich beam specimen was fabricated by treating with MR elastomers between two thin aluminum face-plates.Experiment was carried out to investigate the vibration responses of the sandwich beam with respect to the intensity of the magnetic field and excitation frequencies.The results show that the sandwich beams with MR elastomers cores have the capabilities of shifting natural frequencies and the vibration amplitudes decrease with the variation of the intensity of external magnetic field. 展开更多
关键词 magnetorheological(MR) ELASTOMER SANDWICH beam vibration response DYNAMICAL CHARACTERISTIC
下载PDF
Rubbing-Induced Vibration Response Analysis of Dual-Rotor-Casing System 被引量:2
9
作者 Ma Xinxing Ma Hui +1 位作者 Zeng Jin Piao Yuhua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期101-108,共8页
Considering gyroscopic effects caused by rotational speed,torsional vibration as well as coupling effects among inner rotor,out rotor and casing,a dynamic model of the dual-rotor-casing system is established using fin... Considering gyroscopic effects caused by rotational speed,torsional vibration as well as coupling effects among inner rotor,out rotor and casing,a dynamic model of the dual-rotor-casing system is established using finite element(FE)method.By comparing the natural characteristics obtained from MATLAB and ANSYS,the developed model is verified.Then rubbing-induced vibration responses in dual-rotor-casing system are analyzed.The effects of rotational speed and speed ratio on rubbing vibration responses of the system are discussed.Results show that different combined frequency components will appear in the spectrum except two unbalanced excitation frequencies and their multiple frequency components,and these frequencies can be used as the dual-rotor aero-engine rubbing failure diagnosis frequencies when rubbing occurs.Besides,the amplitude of torsional vibration is larger than that of lateral vibration under the same working condition,and speed ratio has a great impact on the periodicity of the system rubbing-induced motion trajectory.The amplitude of rubbing-induced responses under counter-rotation is less than that under co-rotation with the same parameters. 展开更多
关键词 dual-rotor-casing SYSTEM RUBBING FAULT finite element method coupling dynamic
下载PDF
A human-sensitive frequency band vibration isolator for heavy-duty truck seats
10
作者 Qingqing LIU Shenlong WANG +5 位作者 Ge YAN Hu DING Haihua WANG Qiang SHI Xiaohong DING Huijie YU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1733-1748,共16页
In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven... In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers. 展开更多
关键词 human-sensitive frequency band quasi-zero stiffness(QZS) heavy-duty truck seat real random road spectrum low-frequency vibration isolation
下载PDF
Enhanced galloping energy harvester with cooperative mode of vibration and collision 被引量:2
11
作者 Qiong WANG Zewen CHEN +5 位作者 Linchuan ZHAO Meng LI Hongxiang ZOU Kexiang WEI Xizheng ZHANG Wenming ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第7期945-958,共14页
The low power and narrow speed range remain bottlenecks that constrain the application of small-scale wind energy harvesting.This paper proposes a simple,lowcost,and reliable method to address these critical issues.A ... The low power and narrow speed range remain bottlenecks that constrain the application of small-scale wind energy harvesting.This paper proposes a simple,lowcost,and reliable method to address these critical issues.A galloping energy harvester with the cooperative mode of vibration and collision(GEH-VC)is presented.A pair of curved boundaries attached with functional materials are introduced,which not only improve the performance of the vibration energy harvesting system,but also convert more mechanical energy into electrical energy during collision.The beam deforms and the piezoelectric energy harvester(PEH)generates electricity during the flow-induced vibration.In addition,the beam contacts and separates from the boundaries,and the triboelectric nanogenerator(TENG)generates electricity during the collision.In order to reduce the influence of the boundaries on the aerodynamic performance and the feasibility of increasing the working area of the TENG,a vertical structure is designed.When the wind speed is high,the curved boundaries maintain a stable amplitude of the vibration system and increase the frequency of the vibration system,thereby avoiding damage to the piezoelectric sheet and improving the electromechanical conversion efficiency,and the TENG works with the PEH to generate electricity.Since the boundaries can protect the PEH at high wind speeds,its stiffness can be designed to be low to start working at low wind speeds.The electromechanical coupling dynamic model is established according to the GEH-VC operating principle and is verified experimentally.The results show that the GEH-VC has a wide range of operating wind speeds,and the average power can be increased by 180%compared with the traditional galloping PEH.The GEH-VC prototype is demonstrated to power a commercial temperature sensor.This study provides a novel perspective on the design of hybrid electromechanical conversion mechanisms,that is,to combine and collaborate based on their respective characteristics. 展开更多
关键词 energy harvesting wind energy GALLOPING piezoelectric energy harvester(PEH)
下载PDF
Optimization and Mechanical Accuracy Reliability of a New Type of Forging Manipulator 被引量:6
12
作者 CHEN Kang MA Chunxiang +1 位作者 ZHENG Maoqi GAO Feng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期236-248,共13页
Researches on forging manipulator have enormous influence on the development of the forging industry and national economy.Clamp device and lifting mechanism are the core parts of forging manipulator,and have been stud... Researches on forging manipulator have enormous influence on the development of the forging industry and national economy.Clamp device and lifting mechanism are the core parts of forging manipulator,and have been studied for longer time.However,the optimization and mechanical accuracy reliability of them are less analyzed.Based on General Function(G_F)set and parallel mechanism theory,proper configuration of 10t forging manipulator is selected firstly.A new type of forging manipulator driven by cylinders is proposed.After solved mechanical analysis of manipulator's core mechanisms,expressions of force of cylinders are carried out.In order to achieve smaller force afforded by cylinders and better mechanical characteristics,some particular sizes of core mechanisms are optimized intuitively through the combined use of the genetic algorithms(GA)and GUI interface in MATLAB.Comparing with the original mechanisms,optimized clamp saves at least 8 percent efforts and optimized lifting mechanism 20 percent under maximum working condition.Finally,considering the existed manufacture error of components,mechanical accuracy reliability of optimized clamp,lifting mechanism and whole manipulator are demonstrated respectively based on fuzzy reliability theory.Obtained results show that the accuracy reliability of optimized clamp is bigger than 0.991 and that of optimized lifting mechanism is 0.995.To the whole manipulator under maximum working condition,that value exceeds 0.986 4,which means that optimized manipulator has high motion accuracy and is reliable.A new intuitive method is created to optimize forging manipulator sizes efficiently and more practical theory is utilized to analyze mechanical accuracy reliability of forging manipulator precisely. 展开更多
关键词 forging manipulator G_F set configuration optimization mechanical reliability
下载PDF
Design,modeling and control of high-bandwidth nano-positioning stages for ultra-precise measurement and manufacturing:a survey
13
作者 Wei-Wei Huang Xiangyuan Wang +4 位作者 Yixuan Meng Linlin Li Xinquan Zhang Mingjun Ren Li-Min Zhu 《International Journal of Extreme Manufacturing》 CSCD 2024年第6期204-234,共31页
High-bandwidth nano-positioning stages(NPSs)have boosted the advancement of modern ultra-precise,ultra-fast measurement and manufacturing technologies owing to their fast dynamic response,high stiffness and nanoscale ... High-bandwidth nano-positioning stages(NPSs)have boosted the advancement of modern ultra-precise,ultra-fast measurement and manufacturing technologies owing to their fast dynamic response,high stiffness and nanoscale resolution.However,the nonlinear actuation,lightly damped resonance and multi-axis cross-coupling effect bring significant challenges to the design,modeling and control of high-bandwidth NPSs.Consequently,numerous advanced works have been reported over the past decades to address these challenges.Here,this article provides a comprehensive review of high-bandwidth NPSs,which covers four representative aspects including mechanical design,system modeling,parameters optimization and high-bandwidth motion control.Besides,representative high-bandwidth NPSs applied to atomic force microscope and fast tool servo are highlighted.By providing an extensive overview of the design procedure for high-bandwidth NPSs,this review aims to offer a systemic solution for achieving operation with high speed,high accuracy and high resolution.Furthermore,remaining difficulties along with future developments in this fields are concluded and discussed. 展开更多
关键词 nano-positioning stage high-bandwidth compliant mechanism design dynamics modeling motion control
下载PDF
Ultra‑High Sensitivity Anisotropic Piezoelectric Sensors for Structural Health Monitoring and Robotic Perception
14
作者 Hao Yin Yanting Li +4 位作者 Zhiying Tian Qichao Li Chenhui Jiang Enfu Liang Yiping Guo 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期432-446,共15页
Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor strugg... Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy. 展开更多
关键词 Flexible piezoelectric filaments ANISOTROPIC Ultra-high sensitivity Structural health detection Texture recognition
下载PDF
Application of Modelica/MWorks on modeling,simulation and optimization for electro-hydraulic servo valve system 被引量:2
15
作者 Ming Li Guang Meng +2 位作者 Jianping Jing Jinyang Liu Zuoyang Zhong 《Theoretical & Applied Mechanics Letters》 2012年第6期49-54,共6页
Electro-hydraulic servo valve is a typical complicated multi-domain system constituted by mechanical, electric, hydraulic and magnetic components, which is widely used in electro-hydraulic servo systems such as constr... Electro-hydraulic servo valve is a typical complicated multi-domain system constituted by mechanical, electric, hydraulic and magnetic components, which is widely used in electro-hydraulic servo systems such as construction machinery, heavy equipment, weapon and so forth. The traditional method of modeling and simulation of servo valve is based on block diagram or signal flow, which cannot describe the servo valve system from components level nor be used in modeling and simulation of overall servo systems. In the procedure of traditional method, computational causality must be involved in modeling of servo valve, which is inconvenient to execute modification on components or parameters. Modelica is an object-oriented modeling language which is suited for large, complex, heterogeneous and multi-domain systems. The key features of Modelica are multi-domain, object-oriented and non-causal, which are suitable for modeling of servo valve and make the model readable, reusable, and easy to modify. The simulation results show similar curves with traditional method. This new servo valve modeling and simulation method can provide the engineers a more efficient way to design and optimize a servo valve and an overall servo system. 展开更多
关键词 MODELICA MWorks servo valve MODELING SIMULATION OPTIMIZATION
下载PDF
Design and experiment of an adaptive dynamic vibration absorber with smart leaf springs
16
作者 Xiangying GUO Yunan ZHU +1 位作者 Yegao QU Dongxing CAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第10期1485-1502,共18页
An adaptive dynamic vibration absorber(ADVA)is designed for lowfrequency vibration suppression.The leaf springs are applied as the tuning stiffness elements.The principle of variable stiffness is analyzed to obtain th... An adaptive dynamic vibration absorber(ADVA)is designed for lowfrequency vibration suppression.The leaf springs are applied as the tuning stiffness elements.The principle of variable stiffness is analyzed to obtain the effective range of the first natural frequency variation.A classic simply supported manipulator is selected as the controlled system.The coupled dynamic model of the manipulator-ADVA system is built to obtain the maximum damping efficiency and the vibration absorption capacity of the designed ADVA.An experimental platform is set up to verify the theoretical results.It is revealed that the ADVA can adjust the first natural frequency on a large scale by changing the curvature of the leaf springs.The amplitude of the manipulator is reduced obviously with the installation of the designed ADVA.Finally,based on the short-time Fourier transformation(STFT),a stepwise optimization algorithm is proposed to achieve a quick tuning of the natural frequency of the ADVA so that it can always coincide with the frequency of the prime structure.Through the above steps,the intelligent frequency tuning of the ADVA is realized with high vibration absorption performance in a wide frequency range. 展开更多
关键词 stiffness tuning adaptive dynamic vibration absorber(ADVA) leaf spring vibration control
下载PDF
Review on Dynamic Modeling and Vibration Characteristics of Rotating Cracked Blades
17
作者 Hui Ma Zhiyuan Wu +4 位作者 Jin Zeng Weiwei Wang Hongji Wang Hong Guan Wenming Zhang 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第4期207-227,共21页
As one of the most important parts in the engine,the structure and state of the rotating blade directly affect the normal performance of the aeroengine.In order to monitor engine crack failure and ensure flight safety... As one of the most important parts in the engine,the structure and state of the rotating blade directly affect the normal performance of the aeroengine.In order to monitor engine crack failure and ensure flight safety,it is necessary to carry out research on the dynamic modeling of the cracked blade and breathing crack-induced vibration mechanisms.This paper summarizes the current research status on the dynamics of cracked blade,and the related topics mainly include four aspects:crack propagation path,mechanical model of open and breathing cracks,dynamic modeling methods of cracked blades such as lumped mass model,semi-analytical model and finite element model,and dynamic characteristics of cracked blades.The review will provide valuable references for future studies on dynamics and fault diagnosis of cracked blade in aeroengine. 展开更多
关键词 breathing crack crack propagation cracked blade dynamic characteristics dynamic modeling
下载PDF
Mechanism,Actuation,Perception,and Control of Highly Dynamic Multilegged Robots:A Review 被引量:19
18
作者 Jun He Feng Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第5期120-149,共30页
Multilegged robots have the potential to serve as assistants for humans,replacing them in performing dangerous,dull,or unclean tasks.However,they are still far from being sufficiently versatile and robust for many app... Multilegged robots have the potential to serve as assistants for humans,replacing them in performing dangerous,dull,or unclean tasks.However,they are still far from being sufficiently versatile and robust for many applications.This paper addresses key points that might yield breakthroughs for highly dynamic multilegged robots with the abilities of running(or jumping and hopping)and self-balancing.First,21 typical multilegged robots from the last five years are surveyed,and the most impressive performances of these robots are presented.Second,current developments regarding key technologies of highly dynamic multilegged robots are reviewed in detail.The latest leg mechanisms with serial-parallel hybrid topologies and rigid–flexible coupling configurations are analyzed.Then,the development trends of three typical actuators,namely hydraulic,quasi-direct drive,and serial elastic actuators,are discussed.After that,the sensors and modeling methods used for perception are surveyed.Furthermore,this paper pays special attention to the review of control approaches since control is a great challenge for highly dynamic multilegged robots.Four dynamics-based control methods and two model-free control methods are described in detail.Third,key open topics of future research concerning the mechanism,actuation,perception,and control of highly dynamic multilegged robots are proposed.This paper reviews the state of the art development for multilegged robots,and discusses the future trend of multilegged robots. 展开更多
关键词 Multilegged robot MECHANISM ACTUATION PERCEPTION Control
下载PDF
Design of a Servo Mechanical Press with Redundant Actuation 被引量:7
19
作者 GUO Weizhong GAO Feng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第4期574-579,共6页
A servo press is a new type of mechanical press that is driven by programmable motors and offers superior performance such as low noise, excellent efficiency and high precision for metal forming operations. Similar to... A servo press is a new type of mechanical press that is driven by programmable motors and offers superior performance such as low noise, excellent efficiency and high precision for metal forming operations. Similar to multi-link mechanical presses, a servo mechanical press tends to grow in size as the tonnage increases that calls for larger, heavy duty servo motors, which could be expensive and may not even be available. In this paper, a new concept of servo mechanical press with redundant actuation is proposed firstly using two servo motors driving one input shaft, i.e. one-point-two-motor mode that makes it possible to produce a larger press with available servomotors. Then the punching mechanism design is detailed. The performance indices are set up including mechanical advantage reciprocal and link force ratios. A bounded feasible solution space is constructed for dimensional synthesis based on non-dimensional link lengths and assembly conditions. The performance atlases are depicted over the bounded feasible solution space that lead to a visual solution of the punching mechanism with global optimization. Finally, case studies are given to illustrate the design method with visual global optimization, and a prototype with 200 t punching force is being developed in our laboratory to demonstrate efficacy of the new concept for servo mechanical press. The presented research provides a feasible solution to the development of heavy-duty servo mechanical presses and finds potential applications in the development of other types of heavy equipments with electric drive. 展开更多
关键词 servo mechanical press redundant actuation mechanism design visual global optimization PROTOTYPE
下载PDF
Dynamic Modeling and Experiment of a New Type of Parallel Servo Press Considering Gravity Counterbalance 被引量:4
20
作者 HE Jun GAO Feng +1 位作者 BAI Yongjun WU Shengfu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第6期1222-1233,共12页
The large capacity servo press is traditionally realized by means of redundant actuation, however there exist the over-constraint problem and interference among actuators, which increases the control difficulty and th... The large capacity servo press is traditionally realized by means of redundant actuation, however there exist the over-constraint problem and interference among actuators, which increases the control difficulty and the product cost. A new type of press mechanism with parallel topology is presented to develop the mechanical servo press with high stamping capacity. The dynamic model considering gravity counterbalance is proposed based on the virtual work principle, and then the effect of counterbalance cylinder on the dynamic performance of the servo press is studied. It is found that the motor torque required to operate the press is a lot less than the others when the ratio of the counterbalance force to the gravity of ram is in the vicinity of 1.0. The stamping force of the real press prototype can reach up to 25 MN on the position of 13 mm away from the bottom dead center. The typical deep-drawing process with 1 200 mm stroke at 8 strokes per minute is proposed by means of five order polynomial. On this process condition, the driving torques are calculated based on the above dynamic model and the torque measuring test is also carried out on the prototype. It is shown that the curve trend of calculation torque is consistent to the measured result and that the average error is less than 15%. The parallel mechanism is introduced into the development of large capacity servo press to avoid the over-constraint and interference of traditional redundant actuation, and its dynamic characteristics with gravity counterbalance are presented. 展开更多
关键词 mechanical press parallel mechanism dynamic modeling virtual work principle
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部