期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Shock Tube Measurement of Ethylene Ignition Delay Time and Molecular Collision Theory Analysis
1
作者 Xiao-he Xiong Yan-jun Ding +1 位作者 Shuo Shi Zhi-min Peng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第6期761-766,I0002,共7页
In this study, 75% and 96% argon diluent conditions were selected to determine the ig- nition delay time of stoichiometric mixture of C2Ha/O2/Ar within a range of pressures (1.3-:3.0 arm) and temperatures (1092-17... In this study, 75% and 96% argon diluent conditions were selected to determine the ig- nition delay time of stoichiometric mixture of C2Ha/O2/Ar within a range of pressures (1.3-:3.0 arm) and temperatures (1092-1743 K). Results showed a logarithmic linear rela- tionship of the ignition delay time with the reciprocal of temperatures. Under both two diluent conditions, ignition delay time decreased with increased temperature. By multiple linear regression analysis, the ignition delay correlation was deduced. According to this correlation, the calculated ignition delay time in 96% diluent was found to be nearly five times that in 75% diluent. To explain this discrepancy, the hard-sphere collision theory was adopted, and the collision numbers of ethylene to oxygen were calculated. The total collision numbers of ethylene to oxygen were 5.99×10^30 s^-1cm^-3 in 75% diluent and 1.53×10^29 s^-1cm^-3 in 96% diluent (about 40 times that in 75% diluent). According to the discrepancy between ignition delay time and collision numbers, viz. 5 times corresponds to 40 times, the steric factor can 展开更多
关键词 Shock tube ETHYLENE Ignition delay Molecule collision
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部