Based on a set of equations established by Duan et al. (1992, 1996) for a geofluid system H2O-CO2-CH4(-N2), a formula is obtained to calculate the heat changes. Combining the geological T-P conditions (geothermal grad...Based on a set of equations established by Duan et al. (1992, 1996) for a geofluid system H2O-CO2-CH4(-N2), a formula is obtained to calculate the heat changes. Combining the geological T-P conditions (geothermal gradients and lithostatic and hydrostatic pressures), the enthalpy of some typical geofluids is figured out. Then the principles of heat transfer of deep-derived supercritical fluids are discussed. The result shows that deep-derived geofluids can bring a large amount of thermal heat and release most heat to the shallow surroundings as they move up, because the molar enthalpies vary very greatly from the deep to shallow, increasing with the increases of T and P. Generally, more than tens of kilojoules heat per molar can be released. Furthermore, the molar enthalpy is affected by the compositions of the geofluids, and the molar enthalpy of CO2, CH4, or N2 is greater than that of H2O, being twice, more than twice, and about 140% of H2O, respectively. Finally, a case study is conducted by investigating a source rock sequence affected hydrothermally by magmatic fluids in the Huimin depression of Shengli Oilfield. The thermal heat calculated theoretically of the fluids related to a diabase intrusion is quite large, which can increase the temperature near the diabase to about 300℃, and that can, to some extent, account for the abnormal rise of the vitrinite reflectance, with the highest of about 3.8% (Ro).展开更多
The methods of X-ray diffraction (XRD) and ICP-AES are applied to analyzing the mineral composition of modern and fossil snail shells in Luochuan section and Xifeng section. The results show that the mineral phase of ...The methods of X-ray diffraction (XRD) and ICP-AES are applied to analyzing the mineral composition of modern and fossil snail shells in Luochuan section and Xifeng section. The results show that the mineral phase of calcium carbonate in modern snail shells is aragonite, but for some fossil snail shells in certain layers of loess sequences, a part of aragonite is transformed into calcite. In Luochuan and Xifeng sections, the stratigraphic borderline of arago- nite-calcite transformation appearing obviously is between L5 and L6. Under the earth surface condition, the arago- nite-calcite transformation is influenced by the factor of temperature only in a long time scale. It seems that the pres- sure is not the factor influencing the aragonite-calcite trans- formation. The results also show that existing age of snail shells is possibly the dominant and principal factor for the aragonite-calcite transformation. To a certain extent, the degree of aragonite-calcite transformation in snail shell is controlled by the content of trace element, such as Mg2+. The trace element can improve the stability of snail shell arago- nite and impede the process of aragonite transforming into calcite.展开更多
基金supported by the Major State Basic Research Development Program of China(G1999043309)the National Natural Science Foundation of China grant 49973001.
文摘Based on a set of equations established by Duan et al. (1992, 1996) for a geofluid system H2O-CO2-CH4(-N2), a formula is obtained to calculate the heat changes. Combining the geological T-P conditions (geothermal gradients and lithostatic and hydrostatic pressures), the enthalpy of some typical geofluids is figured out. Then the principles of heat transfer of deep-derived supercritical fluids are discussed. The result shows that deep-derived geofluids can bring a large amount of thermal heat and release most heat to the shallow surroundings as they move up, because the molar enthalpies vary very greatly from the deep to shallow, increasing with the increases of T and P. Generally, more than tens of kilojoules heat per molar can be released. Furthermore, the molar enthalpy is affected by the compositions of the geofluids, and the molar enthalpy of CO2, CH4, or N2 is greater than that of H2O, being twice, more than twice, and about 140% of H2O, respectively. Finally, a case study is conducted by investigating a source rock sequence affected hydrothermally by magmatic fluids in the Huimin depression of Shengli Oilfield. The thermal heat calculated theoretically of the fluids related to a diabase intrusion is quite large, which can increase the temperature near the diabase to about 300℃, and that can, to some extent, account for the abnormal rise of the vitrinite reflectance, with the highest of about 3.8% (Ro).
基金This work was supported by the National Key Program for Basic Research(Grant No.2001 CCB00100)the Key Pro-gram of National Natural Science Foundation of China(Grant No:4033 1001)the National Basic Research Program of China(Grant No:2004CB720204).
文摘The methods of X-ray diffraction (XRD) and ICP-AES are applied to analyzing the mineral composition of modern and fossil snail shells in Luochuan section and Xifeng section. The results show that the mineral phase of calcium carbonate in modern snail shells is aragonite, but for some fossil snail shells in certain layers of loess sequences, a part of aragonite is transformed into calcite. In Luochuan and Xifeng sections, the stratigraphic borderline of arago- nite-calcite transformation appearing obviously is between L5 and L6. Under the earth surface condition, the arago- nite-calcite transformation is influenced by the factor of temperature only in a long time scale. It seems that the pres- sure is not the factor influencing the aragonite-calcite trans- formation. The results also show that existing age of snail shells is possibly the dominant and principal factor for the aragonite-calcite transformation. To a certain extent, the degree of aragonite-calcite transformation in snail shell is controlled by the content of trace element, such as Mg2+. The trace element can improve the stability of snail shell arago- nite and impede the process of aragonite transforming into calcite.