期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
The interface structure and property of magnesium matrix composites:A review
1
作者 Hongwei Xiong Lidong Gu +7 位作者 Jingya Wang Liping Zhou Tao Ying Shiwei Wang Haitao Zhou Jianbo Li Yang Gao Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2595-2623,共29页
Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts ... Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts as a“bridge”between the matrix and reinforcement,playing crucial roles in critical processes such as load transfer,failure behavior,and carrier transport.A deep understanding of the interfacial structures,properties,and effects holds paramount significance in the study of composites.This paper presents a comprehensive review of prior researches related to the interface of Mg matrix composites.Firstly,the different interfacial structures and interaction mechanisms encompassing mechanical,physical,and chemical bonding are introduced.Subsequently,the interfacial mechanical properties and their influence on the overall properties are discussed.Finally,the paper addresses diverse interface modification methods including matrix alloying and reinforcement surface treatment. 展开更多
关键词 Mg matrix composites INTERFACE interfacial strength interfacial modification
下载PDF
压力温度限值曲线计算与比较分析 被引量:2
2
作者 吕峰 钱海洋 +1 位作者 王荣山 黄平 《核动力工程》 EI CAS CSCD 北大核心 2012年第3期65-68,共4页
核电厂在启停堆过程中必须将压力和温度控制在限值范围内,即压力温度限值曲线(P-T曲线)所允许的范围内,以防止反应堆压力容器发生脆性开裂。以法国的RCCM规范、美国的ASME规范和我国的核行业标准EJ/T918为对象,对比分析P-T曲线各自的计... 核电厂在启停堆过程中必须将压力和温度控制在限值范围内,即压力温度限值曲线(P-T曲线)所允许的范围内,以防止反应堆压力容器发生脆性开裂。以法国的RCCM规范、美国的ASME规范和我国的核行业标准EJ/T918为对象,对比分析P-T曲线各自的计算方法,讨论了所采用的保守假设对计算结果的影响。研究表明,选取材料静态断裂韧性KIC计算P-T曲线将会增加核电厂启停堆过程中的操控空间;与最新版国外规范比较,我国行业标准EJ/T918的计算结果显得过于保守。 展开更多
关键词 反应堆压力容器 压力温度限值曲线 辐照脆化
下载PDF
Progress on the ultrasonic testing and laser thermography techniques for NDT of tokamak plasma-facing components 被引量:3
3
作者 Cuixiang Pei Haochen Liu +2 位作者 Jinxing Qiu Tianhao Liu Zhenmao Chen 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第3期180-187,共8页
During manufacturing and operation, different kinds of defects, e.g., delamination or surface cracks, may be generated in the plasma-facing components (PFCs) of a Tokamak device. To ensure the safety of the PFCs, vari... During manufacturing and operation, different kinds of defects, e.g., delamination or surface cracks, may be generated in the plasma-facing components (PFCs) of a Tokamak device. To ensure the safety of the PFCs, various kinds of nondestructive testing (NDT) techniques are needed for different defect and failure mode. This paper gives a review of the recently developed ultrasonic testing (UT) and laser thermography methods for inspection of the delamination and surface cracks in PFCs. For monoblock W/Cu PFCs of divertor, the bonding quality at both W-Cu and Cu- CuCrZr interfaces was qualified by using UT with a focus probe during manufacturing. A noncontact, coupling-free and flexible ultrasonic scanning testing system with use of an electromagnetic acoustic transducer and a robotic inspection manipulator was introduced then for the in-vessel inspection of delamination defect in first wall (FW). A laser infrared thermography testing method is highlighted for the on-line inspection of delamination defect in FW through the vacuum vessel window of the Tokamak reactor. Finally, a new laser spot thermography method using laser spot array source was described for the online inspection of the surface cracks in FW. 展开更多
关键词 Plasma-facing components Ultrasonic testing LASER THERMOGRAPHY DELAMINATION Surface crack
下载PDF
Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson's ratio 被引量:2
4
作者 Qiao ZHANG Yuxin SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1457-1486,共30页
This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relatio... This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial.First,the NPR and NTE of the metamaterial are derived analytically based on energy conservation.The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method(FEM).Subsequently,the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity.The differential quadrature(DQ)FEM(DQFEM)is utilized to obtain the numerical solutions.It is shown that NPR and NTE can enhance the global stiffness of sandwich structures.The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress,natural frequency,and critical buckling load. 展开更多
关键词 negative Poisson's ratio(NPR) negative thermal expansion(NTE) sand-wich plate VIBRATION BUCKLING
下载PDF
Numerical methods for the magneto-mechanical coupling analysis of invessel components in Tokamak devices 被引量:1
5
作者 Xudong Li Shejuan Xie +1 位作者 Cuixiang Pei Zhenmao Chen 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第3期173-179,共7页
Magneto-mechanical coupling vibration arises in the in-vessel components of Tokamak devices especially during the plasma disruption. Strong electromagnetic forces cause the structures to vibrate while the motion in tu... Magneto-mechanical coupling vibration arises in the in-vessel components of Tokamak devices especially during the plasma disruption. Strong electromagnetic forces cause the structures to vibrate while the motion in turn changes the distribution of the electromagnetic field. To ensure the Tokamak devices operating in a designed state, numerical analysis on the coupling vibration is of great importance. This paper introduces two numerical methods for the magneto-mechanical coupling problems. The coupling term of velocity and magnetic flux density is manipulated in both Eulerian and Lagrangian description, which brings much simplification in numerical implementation. Corresponding numerical codes have been developed and applied to the dynamic simulation of a test module in J-TEXT and the vacuum vessel of HL-2M during plasma disruptions. The results reveal the evident influence of the magnetic stiffness and magnetic damping effects on the vibration behavior of the in-vessel structures. Finally, to deal with the halo current injection problem, a numerical scheme is described and validated which can simulate the distribution of the halo current without complicated manipulations. 展开更多
关键词 Magneto-mechanical coupling analysis In-vessel component Plasma DISRUPTION HALO current NUMERICAL simulation
下载PDF
Caution to Apply Magnetic Barkhausen Noise Method to Nondestructive Evaluation of Plastic Deformation in Some Ferromagnetic Materials 被引量:1
6
作者 Manru He Takanori Matsumoto +4 位作者 Tetsuya Uchimoto Toshiyuki Takagi Hongen Chen Shejuan Xie Zhenmao Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期85-91,共7页
Magnetic Barkhausen Noise(MBN) method is known as an effective nondestructive evaluation(NDE) method for evaluation of residual stress in ferromagnetic materials. Some studies on the feasibility of the MBN method for ... Magnetic Barkhausen Noise(MBN) method is known as an effective nondestructive evaluation(NDE) method for evaluation of residual stress in ferromagnetic materials. Some studies on the feasibility of the MBN method for NDE of residual strains were also conducted and found applicable. However, these studies are mainly focused on the state of residual strains which were introduced through a one-cycle-loading process. In practice, however, structures may suffer from an unpredictable and complicated loading history, i.e., the final state of plastic strain may be induced by several times of large loads. Whether the loading history has influences on MBN signals or not is of great importance for the practical application of the MBN method. In this paper, several ferromagnetic specimens with the same final state of residual strain but of different loading history were fabricated and inspected by using a MBN testing system. The experimental results reveal that the loading history has a significant influence on the detected MBN signals especially for a residual strain in range less than 1%, which doubts the feasibility to apply the MBN method simply in the practical environment. In addition, micro-observations on the magnetic domain structures of the plastic damaged specimens were also carried out to clarify the influence mechanism of loading history on the MBN signals. 展开更多
关键词 Plastic damage Deformation history MBN method Ferromagnetic materials
下载PDF
Hybrid Composite Based on Natural Rubber Reinforced with Short Fibers of the Triumfetta cordifolia/Saccharum officinarum L.: Performance Evaluation 被引量:2
7
作者 Abel Emmanuel Njom Armel Mewoli +7 位作者 Marie Josette Ndengue Fabien Betene Ebanda Augustine Demze Nitidem Sandrine Biloa Otiti Yannick Devario Youssi Bang Legrand Ndoumou Belinga Pierre Marcel Anicet Noah Atangana Ateba 《Journal of Minerals and Materials Characterization and Engineering》 CAS 2022年第5期385-399,共15页
This article contributes to the development of the new class of fully biodegradable “green” composites by combining fibers (natural/bio) with biodegradable resin. The vegetable fibers (Triumfetta cordifolia and suga... This article contributes to the development of the new class of fully biodegradable “green” composites by combining fibers (natural/bio) with biodegradable resin. The vegetable fibers (Triumfetta cordifolia and sugarcane bagasse) treated with NaOH and bleached were incorporated into a natural rubber matrix. The influence of the fiber ratio on the physical properties, tensile strength and surface hardness of the hybrid composites was analyzed. The results show that the addition of fibers in the natural rubber matrix increases the water absorption capacity but gradually reduces it with increasing fiber ratio. The hybrid composites of the NRT50-50B proportions show the best tensile strengths at 20 phr and a shore A hardness of 43.7 at 30 phr. The combination of two fibers has improved the physical and mechanical properties of the hybrid composites which can be used in engineering applications. 展开更多
关键词 Hybrid Composites Triumfetta cordifolia Fiber Sugarcane Bagasse Fiber Natural Rubber Shore a Hardness
下载PDF
Physical-Chemical and Mechanical Characterization of the Bast Fibers of <i>Triumfetta cordifolia</i>A.Rich. from the Equatorial Region of Cameroon 被引量:3
8
作者 Armel Edwige Mewoli César Segovia +4 位作者 Fabien Betene Ebanda Atangana Ateba Pierre Marcel Anicet Noah Benoit Ndiwe Abel Emmanuel Njom 《Journal of Minerals and Materials Characterization and Engineering》 2020年第4期163-176,共14页
The project consists in the implementation of a biocomposite based on tannin resin and natural rubber matrices with the bast fibres of <i>Triumfetta cordifolia </i>A.Rich.“<i>Okong</i>” from ... The project consists in the implementation of a biocomposite based on tannin resin and natural rubber matrices with the bast fibres of <i>Triumfetta cordifolia </i>A.Rich.“<i>Okong</i>” from the equatorial region of Cameroon as reinforcement. A study of this still little known fibre is necessary. This paper evaluates the physico-chemical and mechanical characteristics of the fibers. The fibers are extracted by us. A series of experiments is conducted for this purpose: morphological observation with a scanning electron microscope (SEM);density evaluation with a helium pycnometer;absorption rate evaluation according to the protocol available in the literature, Fourier Transform Infrared Spectrometry (FT-IR), chemical composition evaluation according to ASTM 1972 and ASTM 1977 standards, thermogravimetric analysis (TGA) and tensile tests on fiber bundles according to NF T25-501-3. The results show that the fiber is made up of several elementary fibers with oval cross-sections. A density of 1.477g/cm<sup>3</sup> close to that of hemp. These fibers have a water absorption rate of 342.5%, which correlates with the presence of free hydroxyl functional groups obtained from the spectrometry study (FT-IR). Chemical analysis reveals that the fiber is made up of celluloses (44.4%), hemicelluloses (30.8%), lignins (18.9%), pectins (3.3%), waxes (0.5%) and minerals (2.1%). In addition, we learn that the fibers studied dehydrate at 11.49%, showinga notable thermal stability around 235°C with a peak thermal decomposition of cellulose located at 420°C. In terms of mechanical behaviour, the results reveal that the fibers offer a Young’s modulus in traction of 12.4 ± 6.9 GPa, a tensile strength of 526 ± 128 MPa and an elongation at break of 2.25%. The information thus obtained makes it possible to place these fibers in the same fiber group as flax and jute. They could therefore be used for the same types of applications. They also inform us that these fibers can withstand the temperatures of composite shaping by thermocompression. 展开更多
关键词 Triumfetta cordifolia Fibers MORPHOLOGY Chemical Analysis Thermal Degradation Mechanical Behavior
下载PDF
Characterization of Tannin-Based Resins from the Barks of <i>Ficus platyphylla</i>and of <i>Vitellaria paradoxa</i>: Composites’ Performances and Applications 被引量:1
9
作者 Richard Ntenga Frederic Djoda Pagore +2 位作者 Antonio Pizzi Etienne Mfoumou Louis-Max Ayina Ohandja 《Materials Sciences and Applications》 2017年第12期899-917,共19页
This work investigates the physico-chemical and mechanical properties of tannins extracted from wood for composite materials manufacturing. Sustainable knowledge (in terms of physico-chemical properties and behaviours... This work investigates the physico-chemical and mechanical properties of tannins extracted from wood for composite materials manufacturing. Sustainable knowledge (in terms of physico-chemical properties and behaviours) of the material is needed to further enhance its applications. The condensed tannins extracted from the Bark of Ficus platyphylla (BFP) and the Bark of Vitellaria paradoxa (BVP) were analyzed using Matrix Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF), Mass Spectroscopy and Attenuated Total Reflectance Fourier Transform Mid-InfraRed (ATR-FT MIR) spectra in the ranges 1800 cm-1 and 600 cm-1, as well as using CP MAS 13C-NMR. It was found that, these two tannins are procyanidin/prodelphinidin and made up of catechin/epicatechin, gallocatechin/epigallocatechin units, fisetinidin, galloyl and carbohydrates residues. Furthermore, BFP and BVP tannin bonded particleboard densities lie in the range recommended by NF EN 326-1994 standard. The resins also yielded good internal bond strength results of the panels, above relevant international standard specifications minimum requirements for interior-grade panels. The Transmission Electron Microscopy with Energy Dispersive X-ray Spectroscopy Analysis (TEM/ EDXA) are showing the ultrastructure and reveal that most of the resin material appears to be in an amorphous phase mainly composed of carbon/oxygen with small amounts of K, Ca and Mg. These particles have a very irregular morphology. 展开更多
关键词 Wood Condensed TANNINS Fibre/Matrix Bond Mechanical Properties Active Correlated Transmission Electron Microscopy (ACTEM) MATRIX Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF)
下载PDF
Elastic Predictions of 3D Orthogonal Woven Composites Using Micro/meso-scale Repeated Unit Cell Models
10
作者 JIA Xiwen GAO Limin +2 位作者 ZHANG Tian ZHANG Fa WANG Yan 《Journal of Donghua University(English Edition)》 EI CAS 2019年第4期390-398,共9页
This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yar... This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yarn are obtained by analysis on a micro-scale RUC model assuming fibers in a hexagonal distribution pattern in the polymer matrix.Then a full thickness meso-scale RUC model including weft yarns,warp yarns,Z-yarns and pure resin zones is established and full stiffness matrix of the 3DOWC including the in-plane and flexural constants are predicted.For thick 3DOWC with large number of weft,warp layers,an alternative analysis method is proposed in which an inner meso-RUC and a surface meso-RUC are established,respectively.Then the properties of 3DOWC are deduced based on laminate theory and properties of the inner and surface layers.The predicted results by the above two alternative methods are in good experimental agreement. 展开更多
关键词 composite MULTI-SCALE analysis repeated unit cell model FINITE ELEMENT method
下载PDF
Design and Construction of Adjustable Mini-standing for Children from 4 to 9 Years Old with Diplegic, Triplegic or Hemiplegic Cerebral Palsy
11
作者 Natalia Lineth Baquero-Salas Luis Mario Mateus-Sandoval 《Journal of Mechanics Engineering and Automation》 2021年第4期97-104,共8页
The present paper sought to redesign,technify and adjust to different sizes of a mini-standing to improve the physical therapy of children from 4 to 9 years old with mild cerebral palsy or in medical conditions that m... The present paper sought to redesign,technify and adjust to different sizes of a mini-standing to improve the physical therapy of children from 4 to 9 years old with mild cerebral palsy or in medical conditions that moderately affect their lower body.This orthopedic attachment provides support to the calf of the patient,resembling its body to a cantilevered element.This allows the patient to improve their posture and safety and prevent bone deformations.To achieve this attachment,simplified design techniques were complemented with Autodesk Inventor finite elements,also additive manufacturing in Polylactic Acid polymer PLA was used for structural parts like the calf support;Likewise,Computerized Numerical Control(CNC)was carried out on Nylon 6/6,a material used due to hygiene and lubrication between parts.A functional and safe prototype is obtained that meets the required age range,whose limitations are children of 120 cm or 30 kg.These were determined in the design requirements and verified with own replicable tests,as well with ASTM(American Society of Testing Materials)standards. 展开更多
关键词 Orthopedic attachment cerebral palsy additive manufacturing PHYSIOTHERAPY adjustability.
下载PDF
Development of Performance Evaluation Technique for Shell-Tube Heat Exchangers
12
作者 Se Youl Won Jae Gon Lee 《Journal of Energy and Power Engineering》 2013年第11期2019-2026,共8页
As the operation time of heat exchanger is increased, the thermal performance of them is gradually degraded due to fouling generated by water-borne deposits which are known to reduce the thermal efficiencies. Currentl... As the operation time of heat exchanger is increased, the thermal performance of them is gradually degraded due to fouling generated by water-borne deposits which are known to reduce the thermal efficiencies. Currently, thermal performance management of heat exchangers is more importantly issued for long term operation. Therefore, the performance evaluation techniques are required to improve the present method for the integrity evaluation of heat exchangers because of the exclusion of fouling calculation and the uncertainty analysis. This paper describes the developed thermal performance evaluation technique applied to the safety-related heat exchangers such as component cooling heat exchangers in a nuclear power plants. 展开更多
关键词 Heat exchanger FOULING uncertainty analysis pressure drop.
下载PDF
Desorption Behavior and Thermogravimetric Analysis of Bio-Hardeners
13
作者 Benoit Ndiwe Antonio Pizzi +4 位作者 Hubert Chapuis Noel Konai Lionel Karga Pierre Girods Raidandi Danwe 《Journal of Renewable Materials》 SCIE EI 2022年第8期2015-2027,共13页
In this work,the thermal degradation and drying of bio-hardeners are investigated.Four bio-hardeners based on exudates of Senegalia senegal,Vachellia nilotica,Vachellia seyal,and Acacia siebteriana were analyzed by FT... In this work,the thermal degradation and drying of bio-hardeners are investigated.Four bio-hardeners based on exudates of Senegalia senegal,Vachellia nilotica,Vachellia seyal,and Acacia siebteriana were analyzed by FTIR and thermogravimetric analysis,and a desorption study was also conducted.The analysis by infrared spectroscopy indicates the existence of oligomers of different types all giving 5-hydroxy-2-hydroxymethylfuran and 2,5-dihydroxymethylfuran which are then the real hardening molecules.The pyrolysis of these extracts reveals three main regions of mass loss,a first region is located between 25℃and 110℃reflecting the loss of water from the adhesive and the formation of some traces of volatile organic compounds such as CO_(2)and CO,a second zone characterized by the release of CO,CO_(2)and CH4 gases with peaks between 110°and 798.8℃.At the end of the analysis,about 22%of the initial mass remains undecomposed,this mass corresponds to the rigid segments of the bio-hardener which are not completely decomposed. 展开更多
关键词 EXUDATES PYROLYSIS FTIR bio-hardener DESORPTION
下载PDF
Ex⁃situ Measurement of Internal Deformation in Ball Grid Array Package with Digital Volume Correlation
14
作者 WANG Long GAO Zizhan +3 位作者 ZHANG Xuanhao LIU Qiaoyu HOU Chuantao XING Ruisi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2024年第5期609-620,共12页
In spacecraft electronic devices,the deformation of solder balls within ball grid array(BGA)packages poses a significant risk of system failure.Therefore,accurately measuring the mechanical behavior of solder balls is... In spacecraft electronic devices,the deformation of solder balls within ball grid array(BGA)packages poses a significant risk of system failure.Therefore,accurately measuring the mechanical behavior of solder balls is crucial for ensuring the safety and reliability of spacecraft.Although finite element simulations have been extensively used to study solder ball deformation,there is a significant lack of experimental validation,particularly under thermal cycling conditions.This is due to the challenges in accurately measuring the internal deformations of solder balls and eliminating the rigid body displacement introduced during ex-situ thermal cycling tests.In this work,an ex-situ three-dimensional deformation measurement method using X-ray computed tomography(CT)and digital volume correlation(DVC)is proposed to overcome these obstacles.By incorporating the layer-wise reliability-guided displacement tracking(LW-RGDT)DVC with a singular value decomposition(SVD)method,this method enables accurate assessment of solder ball mechanical behavior in BGA packages without the influence of rigid body displacement.Experimental results reveal that BGA structures exhibit progressive convex deformation with increased thermal cycling,particularly in peripheral solder balls.This method provides a reliable and effective tool for assessing internal deformations in electronic packages under ex-situ conditions,which is crucial for their design optimization and lifespan predictions. 展开更多
关键词 ball grid array(BGA)packages digital volume correlation ex-situ rigid body displacement thermal cycling test
下载PDF
Strain Gradient Finite Element Formulation of Flexoelectricity in Ferroelectric Material Based on Phase-Field Method 被引量:2
15
作者 Shuai Wang Hengchang Su +1 位作者 Min Yi Li-Hua Shao 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第4期570-579,共10页
Flexoelectricity is a two-way coupling effect between the strain gradient and electric field that exists in all dielectrics,regardless of point group symmetry.However,the high-order derivatives of displacements involv... Flexoelectricity is a two-way coupling effect between the strain gradient and electric field that exists in all dielectrics,regardless of point group symmetry.However,the high-order derivatives of displacements involved in the strain gradient pose challenges in solving electromechanical coupling problems incorporating the flexoelectric effect.In this study,we formulate a phase-field model for ferroelectric materials considering the flexoelectric effect.A four-node quadrilateral element with 20 degrees of freedom is constructed without introducing high-order shape functions.The microstructure evolution of domains is described by an independent order parameter,namely the spontaneous polarization governed by the time-dependent Ginzburg–Landau theory.The model is developed based on a thermodynamic framework,in which a set of microforces is introduced to construct the constitutive relation and evolution equation.For the flexoelectric part of electric enthalpy,the strain gradient is determined by interpolating the mechanical strain at the node via the values of Gaussian integration points in the isoparametric space.The model is shown to be capable of reproducing the classic analytical solution of dielectric materials incorporating the flexoelectric contribution.The model is verified by duplicating some typical phenomena in flexoelectricity in cylindrical tubes and truncated pyramids.A comparison is made between the polarization distribution in dielectrics and ferroelectrics.The model can reproduce the solution to the boundary value problem of the cylindrical flexoelectric tube,and demonstrate domain twisting at domain walls in ferroelectrics considering the flexoelectric effect. 展开更多
关键词 FLEXOELECTRICITY Phase-field method FERROELECTRICS Domain configuration
原文传递
An interlaminar damage shell model for typical composite structures
16
作者 Jie ZHOU Zhen WU +1 位作者 Zhengliang LIU Xiaohui REN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期118-137,共20页
Using the plate/shell elements in commercial software,accurate analysis of interlaminar initial damage in typical composite structures is still a challenging issue.To propose an accurate and efficient model for analys... Using the plate/shell elements in commercial software,accurate analysis of interlaminar initial damage in typical composite structures is still a challenging issue.To propose an accurate and efficient model for analysis of interlaminar initial damage,the following work is carried out:(A)A higher-order theory is firstly proposed by introducing the local Legendre polynomials,and then a novel shell element containing initial damage prediction is developed,which can directly predict transverse shear stresses without any postprocessing methods.Unknown variables at each node are independent of number of layers,so the proposed model is more efficient than the 3D-FEM.(B)Compression experiment is carried out to verify the capability of the proposed model.The results obtained from the proposed model are in good agreement with experimental data.(C)Several examples have been analyzed to further assess the capability of the proposed model by comparing to the 3D-FEM results.Moreover,accuracy and efficiency have been evaluated in different damage criterion by comparing with the selected models.The numerical results show that the proposed model can well predict the initial interlaminar damage as well as other damage.Finally,the model is implemented with UEL subroutine,so that the present approach can be readily utilized to analyze the initial damage in typical composite structures. 展开更多
关键词 Compression experiment Finite element method Initial damage Interlaminar stress Plate/shell element
原文传递
Design of low-frequency circular metastructure isolators with high-load-bearing capacity
17
作者 Ning CHEN Zhichun YANG +3 位作者 Te YANG Yizhou SHEN Wei TIAN Yanlong XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期207-220,共14页
Traditional vibration isolation structures cannot work effectively for low-frequency vibration under heavy loads,due to the inherent contradiction between the high-static and lowdynamic stiffness of these structures.A... Traditional vibration isolation structures cannot work effectively for low-frequency vibration under heavy loads,due to the inherent contradiction between the high-static and lowdynamic stiffness of these structures.Although the challenge can be effectively addressed by introducing a negative stiffness mechanism,the existing structures inevitably have complex configurations.Metastructures,a class of man-made structures with both extraordinary mechanical properties and simple configurations,provide a new insight for low-frequency vibration isolation technology.In this paper,circular metastructure isolators consisting of some simple beams are designed for low-frequency vibration,including a single-layer isolator and a double-layer isolator,and their static and dynamic characteristics are studied,respectively.For the static characteristic,the force–displacement and stiffness–displacement curves are obtained by finite element simulation;for the dynamic characteristic,the vibration transmissibility curves are obtained analytically and numerically.The result shows that the circular nonlinear single-layer isolator has excellent lowfrequency isolation performance,and the isolation frequency band will decrease about 20 Hz when the isolated mass is fixed at 1.535 kg,compared with a similar circular linear isolator.These static and dynamic properties are well verified through experiments.Our work provides an innovative approach for the low-frequency vibration isolation and has wide potential applications in aeronautics. 展开更多
关键词 ISOLATOR LOW-FREQUENCY Curved beam Metastructure STIFFNESS
原文传递
Design strategy of porous elastomer substrate and encapsulation forinorganic stretchableelectronics
18
作者 Jiaxin Li Xianhong Meng +5 位作者 Yunfei Shen Junlin Gu Guoquan Luo Ke Bai Hailong Li Zhaoguo Xue 《International Journal of Smart and Nano Materials》 SCIE EI 2024年第2期330-347,共18页
The emergence of stretchable electronic technology has led to the development of many industries and facilitated many unprecedented applications,owing to its ability to bear var-ious deformations.However,conventional ... The emergence of stretchable electronic technology has led to the development of many industries and facilitated many unprecedented applications,owing to its ability to bear var-ious deformations.However,conventional solid elastomer sub-strates and encapsulation can severely restrict the free motion and deformation of patterned interconnects,leading to poten-tial mechanical failures and electrical breakdowns.To address this issue,we propose a design strategy of porous elastomer substrate and encapsulation to improve the stretchability of serpentine interconnects in island-bridge structures.The ser-pentine interconnects are fully bonded to the elastomer sub-strate,while segments above circular pores remain suspended,allowing for free deformation and a substantial improvement in elastic stretchability compared to the solid substrates.The pores ensure unimpeded interconnect deformations,and mod-erate porosity provides support while maintaining the initial planar state.Compared to conventional solid configurations,finite element analysis(FEA)demonstrates a substantial enhancement of elastic stretchability(e.g.=9 times without encapsulation and=7 times with encapsulation).Uniaxial cyc-lic loading fatigue experiments validate the enhanced elastic stretchability,indicating the mechanical stability of the porous design.With its intrinsic advantages in permeability,the pro-posed strategy has the potential to offer insightful inspiration and novel concepts for advancing the field of stretchable inorganic electronics. 展开更多
关键词 Stretchable inorganic electronics Island-bridge structures porous elastomer substrate encapsulation design serpentine interconnects
原文传递
Design optimization and testing of a morphing leading-edge with a variable-thickness compliant skin and a closed-chain mechanism
19
作者 Zhigang WANG Xiasheng SUN +6 位作者 Yu YANG Wenjie GE Daochun LI Jinwu XIANG Panpan BAO Qi WU Andrea DA RONCH 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期285-300,共16页
Climate warming and the increased demand in air travels motivate the aviation industry to urgently produce technological innovations.One of the most promising innovations is based on the smoothly continuous morphing l... Climate warming and the increased demand in air travels motivate the aviation industry to urgently produce technological innovations.One of the most promising innovations is based on the smoothly continuous morphing leading-edge concept.This study proposes a two-step process for the design of a morphing leading-edge,including the optimization of the outer variable-thickness composite compliant skin and the optimization of the inner kinematic mechanism.For the compliant skin design,an optimization of the variable thickness composite skin is proposed based on a laminate continuity model,with laminate continuity constraint and other manufacturing constraints.The laminate continuity model utilizes a guiding sequence and a ply-drop sequence to describe the overall stacking sequence of plies in different thickness regions of the complaint skin.For the inner kinematic mechanism design,a coupled four-bar linkage system is proposed and optimized to produce specific trajectories at the actuation points on the stringer hats of the compliant skin,which ensures that the compliant skin can be deflected into the aerodynamically optimal profile.Finally,a morphing leading-edge is manufactured and tested.Experimental results are compared with numerical predictions,confirming the feasibility of the morphing leading-edge concept and the overall proposed design approach. 展开更多
关键词 Optimization Design Morphing wing Compliant skin KINEMATICS LEADING-EDGE Control surfaces
原文传递
Multi-stable straw-like carbon nanotubes for mechanical programmability at microscale
20
作者 Jia Liu Yong Ma +4 位作者 Wanjie Ren Fei Pan Shu Guo Yuli Chen Bin Ding 《International Journal of Smart and Nano Materials》 SCIE EI 2024年第1期95-109,共15页
Inspired by macroscale 3D pixel mechanical metamaterials and microscale straw-like carbon nanotube,we propose a design of multi-stable straw-like carbon nanotubes(MSCNT)via optimizing the structure of a unit to obtain... Inspired by macroscale 3D pixel mechanical metamaterials and microscale straw-like carbon nanotube,we propose a design of multi-stable straw-like carbon nanotubes(MSCNT)via optimizing the structure of a unit to obtain multiple stable states under dis-placement loading by molecular dynamics.The unit of MSCNT is mirror-symmetrically connected two truncated graphene cones with specific apex angles.By switching the LJ term in AIREBO potential,we verify that the bistability of unit is co-determined by snap-through instability and microscale adhesions.Moreover,we examine the validity of the multi-stability of the unit cells arranged in series and in parallels.Simulation results indicate that the MSCNT can achieve mechanical programmability in microscale,which triggers many potential applications in need of customizing nanos-cale mechanical behaviors. 展开更多
关键词 Multi-stable state straw-shaped carbon nanotube microscale adhesions mechanical programmability
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部