A low velocity impact response study has been carried out on glass fibre composite laminates, made up of regular aircraft grade epoxy (GFRP) and shape memory polymer (GF-SMP). Under various impact loading intensities ...A low velocity impact response study has been carried out on glass fibre composite laminates, made up of regular aircraft grade epoxy (GFRP) and shape memory polymer (GF-SMP). Under various impact loading intensities (4J, 6J, 12J), the responses are measured by a network of PZT (Lead Zirconate Titanate) sensors. A signal analysis methodology is subsequently developed to process the very high frequency (60 MHz) sampled data. In two frequency bands, namely 0 - 2000 Hz and 0 - 100 KHz, the results are examined and the transient dynamic behaviours of the composite laminates are evaluated. It is observed that both the laminates have generated the high frequency structural waves (0 - 100 KHz), which can be exploited to examine the BVID. However, GF-SMP laminate has shown some advantage in terms of energy dissipation in the structural frequency band (<2000 Hz). Further, the GF-SMP laminate has demonstrated its capability to generate very high frequency structural waves, which could carry the damage information like BVID due to impact event to nearby sensors for impact event monitoring and health assessment.展开更多
The analysis used simple finite elements is performed to simulate the tensile behavior of corroded reinforcing bars extracted from three actual concrete structures. The cross-sectional area of the elements is set to h...The analysis used simple finite elements is performed to simulate the tensile behavior of corroded reinforcing bars extracted from three actual concrete structures. The cross-sectional area of the elements is set to have the actual distribution measured by 3D laser scanner system. The variable factor in the analysis is the length of the elements. The analysis results show that the length of the elements has a major influence on the deformation capacity after yielding. The calculated stress-strain curves, obtained using the elements with a length that is 2 times the bar diameter, are in good agreement with the tensile test results. The calculated stress-strain curves are modeled using a bi-linear model to facilitate the FEA (finite element analysis) of an overall concrete structure. From the analysis results, both the tensile and yield strengths decrease in proportion to the reduction of the minimum cross-sectional area of corroded bars. The ultimate strain has a remarkable decrement as the reduction of the minimum cross-sectional area. Formulas for determining these values are proposed as a function of the decrement ratio of the minimum cross-sectional area of a corroded bar.展开更多
Bird strike studies on typical aluminium leading edges of the Horizontal Tail (HT) with and without Glass Fibre Shape Memory Polymer (GF-SMP) layers are carried out. A one-fifth scaled model of HT is designed and fabr...Bird strike studies on typical aluminium leading edges of the Horizontal Tail (HT) with and without Glass Fibre Shape Memory Polymer (GF-SMP) layers are carried out. A one-fifth scaled model of HT is designed and fabricated. The parameters like bird dimension and energy requirements are accordingly scaled to conduct the bird strike tests. Two leading-edge components have been prepared, namely one with AL 2024-T3 aluminium alloy and the other specimen of the same dimension and material, additionally having GF-SMP composite layers inside the metallic leading edge, in order to enhance its impact resistance. Bird strike experiments are performed on both the specimens, impacting at the centre of the leading edge in the nose tip region with an impact velocity of 115 m/s. The test component is instrumented with linear post-yield strain gauges on the top side and the PZT sensors on the bottom. Furthermore, the impact scenario is monitored using a high-speed camera at 7000 fps. The bird strike event is simulated by an equation of state model, in which the mass of the bird is idealized using smooth particle hydrodynamics element in PAMCRASH<sup>?</sup><sup> </sup>explicit solver. The strain magnitude and its pattern including time duration are found to be in a good correlation between test and simulation. Key metrics are evaluated to devise an SHM scheme for the load and impact event monitoring using strain gauges and PZT sensors. GF-SMP layers have improved the impact resistance of the aluminium leading edge which is certainly encouraging towards finding a novel solution for the high-velocity impact.展开更多
文摘A low velocity impact response study has been carried out on glass fibre composite laminates, made up of regular aircraft grade epoxy (GFRP) and shape memory polymer (GF-SMP). Under various impact loading intensities (4J, 6J, 12J), the responses are measured by a network of PZT (Lead Zirconate Titanate) sensors. A signal analysis methodology is subsequently developed to process the very high frequency (60 MHz) sampled data. In two frequency bands, namely 0 - 2000 Hz and 0 - 100 KHz, the results are examined and the transient dynamic behaviours of the composite laminates are evaluated. It is observed that both the laminates have generated the high frequency structural waves (0 - 100 KHz), which can be exploited to examine the BVID. However, GF-SMP laminate has shown some advantage in terms of energy dissipation in the structural frequency band (<2000 Hz). Further, the GF-SMP laminate has demonstrated its capability to generate very high frequency structural waves, which could carry the damage information like BVID due to impact event to nearby sensors for impact event monitoring and health assessment.
文摘The analysis used simple finite elements is performed to simulate the tensile behavior of corroded reinforcing bars extracted from three actual concrete structures. The cross-sectional area of the elements is set to have the actual distribution measured by 3D laser scanner system. The variable factor in the analysis is the length of the elements. The analysis results show that the length of the elements has a major influence on the deformation capacity after yielding. The calculated stress-strain curves, obtained using the elements with a length that is 2 times the bar diameter, are in good agreement with the tensile test results. The calculated stress-strain curves are modeled using a bi-linear model to facilitate the FEA (finite element analysis) of an overall concrete structure. From the analysis results, both the tensile and yield strengths decrease in proportion to the reduction of the minimum cross-sectional area of corroded bars. The ultimate strain has a remarkable decrement as the reduction of the minimum cross-sectional area. Formulas for determining these values are proposed as a function of the decrement ratio of the minimum cross-sectional area of a corroded bar.
文摘Bird strike studies on typical aluminium leading edges of the Horizontal Tail (HT) with and without Glass Fibre Shape Memory Polymer (GF-SMP) layers are carried out. A one-fifth scaled model of HT is designed and fabricated. The parameters like bird dimension and energy requirements are accordingly scaled to conduct the bird strike tests. Two leading-edge components have been prepared, namely one with AL 2024-T3 aluminium alloy and the other specimen of the same dimension and material, additionally having GF-SMP composite layers inside the metallic leading edge, in order to enhance its impact resistance. Bird strike experiments are performed on both the specimens, impacting at the centre of the leading edge in the nose tip region with an impact velocity of 115 m/s. The test component is instrumented with linear post-yield strain gauges on the top side and the PZT sensors on the bottom. Furthermore, the impact scenario is monitored using a high-speed camera at 7000 fps. The bird strike event is simulated by an equation of state model, in which the mass of the bird is idealized using smooth particle hydrodynamics element in PAMCRASH<sup>?</sup><sup> </sup>explicit solver. The strain magnitude and its pattern including time duration are found to be in a good correlation between test and simulation. Key metrics are evaluated to devise an SHM scheme for the load and impact event monitoring using strain gauges and PZT sensors. GF-SMP layers have improved the impact resistance of the aluminium leading edge which is certainly encouraging towards finding a novel solution for the high-velocity impact.