An ice mass balance buoy(IMB)monitors the evolution of snow and ice cover on seas,ice caps and lakes through the measurement of various variables.The crucial measurement of snow and ice thickness has been achieved usi...An ice mass balance buoy(IMB)monitors the evolution of snow and ice cover on seas,ice caps and lakes through the measurement of various variables.The crucial measurement of snow and ice thickness has been achieved using acoustic sounders in early devices but a more recently developed IMB called the Snow and Ice Mass Balance Array(SIMBA)measures vertical temperature profiles through the air-snow-ice-water column using a thermistor string.The determination of snow depth and ice thickness from SIMBA temperature profiles is presently a manual process.We present an automated algorithm to perform this task.The algorithm is based on heat flux continuation,limit ratio between thermal heat conductivity of snow and ice,and minimum resolution(±0.0625°C)of the temperature sensors.The algorithm results are compared with manual analyses,in situ borehole measurements and numerical model simulation.The bias and root mean square error between algorithm and other methods ranged from 1 to 9 cm for ice thickness counting 2%–7%of the mean observed values.The algorithm works well in cold condition but becomes less reliable in warmer conditions where the vertical temperature gradient is reduced.展开更多
Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalcul...Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.展开更多
基金Academy of Finland[grant number 317999]Natural Science Foundation of China[grant numbers 41376005,41406218,41428603,41506221,11571383]+2 种基金European Union’s Horizon 2020 research and innovation programme[No 727890-INTAROS]the Key Research Program of Frontier Sciences of CAS[QYZDY-SSWDQC021]the Science and Technology Program Guangzhou,China[201804020053].
文摘An ice mass balance buoy(IMB)monitors the evolution of snow and ice cover on seas,ice caps and lakes through the measurement of various variables.The crucial measurement of snow and ice thickness has been achieved using acoustic sounders in early devices but a more recently developed IMB called the Snow and Ice Mass Balance Array(SIMBA)measures vertical temperature profiles through the air-snow-ice-water column using a thermistor string.The determination of snow depth and ice thickness from SIMBA temperature profiles is presently a manual process.We present an automated algorithm to perform this task.The algorithm is based on heat flux continuation,limit ratio between thermal heat conductivity of snow and ice,and minimum resolution(±0.0625°C)of the temperature sensors.The algorithm results are compared with manual analyses,in situ borehole measurements and numerical model simulation.The bias and root mean square error between algorithm and other methods ranged from 1 to 9 cm for ice thickness counting 2%–7%of the mean observed values.The algorithm works well in cold condition but becomes less reliable in warmer conditions where the vertical temperature gradient is reduced.
基金Supported in part by National Key R&D Program of China(2020YFA0406300, 2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013,12061131003,12075252)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263, U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800), Collaborative Research Center CRC 1044, FOR 2359, GRK 214Istituto Nazionale di Fisica Nucleare, ItalyMinistry of Development of Turkey under Contract No. DPT2006K-120470National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society, UK(DH140054, DH160214)The Swedish Research CouncilU. S. Department of Energy(DE-FG02-05ER41374, DE-SC-0012069)
文摘Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.