Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation ...Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.展开更多
Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials.At present,practical superconducting materials include low-temperature superconductors su...Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials.At present,practical superconducting materials include low-temperature superconductors such as NbTi and Nb3Sn,high-temperature superconductors such as Bi-2212,Bi-2223,YBCO,iron-based superconductors and MgB2.The development of low-temperature superconducting wires started earlier and has now entered the stage of industrialized production,showing obvious advantages in mechanical properties and cost under low temperature and middle-low magnetic field.However,due to the insufficient intrinsic superconducting performance,low-temperature superconductors are unable to exhibit excellent performance at high temperature or high fields.Further improvement of supercurrent carrying performance mainly depends on the enhancement of pinning ability.High-temperature superconductors have greater advantages in high temperature and high field,but many of them are still in the stage of further performance improvement.Many high-temperature superconductors are limited by the deficiency in their polycrystalline structure,and further optimization of intergranular connectivity is required.In addition,it is also necessary to further enhance their pinning ability.The numerous successful application instances of high-temperature superconducting wires and tapes also prove their tremendous potential in electric power applications.展开更多
Epitaxial YBCO superconducting films were deposited on the single crystal LaAlO3 (001) substrate by metal organic deposition method. All YBCO films were fired at 820 ℃ in humidity range of 2.6%-19.7% atmosphere. Mi...Epitaxial YBCO superconducting films were deposited on the single crystal LaAlO3 (001) substrate by metal organic deposition method. All YBCO films were fired at 820 ℃ in humidity range of 2.6%-19.7% atmosphere. Microstructure of YBCO thin films was analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Superconducting properties of YBCO films were measured by four-probe method. XRD results showed that the second phase (such as BaF2)and a-axis-oriented grains existed in the films prepared at 2.6% humidity condition; a-axis-oriented grains increased in the film prepared at higher than 4.2% humidity condition; almost pure c-axias-oriented grains existed in the films fired at 4.2% humidity condition. Morphologies of the YBCO films showed that all films had a smooth and crack-free surface. YBCO film prepared at 4.2% humidity condition showed Jc value of 3.3 MA/cm^2 at 77 K in self-field.展开更多
The cube textured pure Ni and non magnetic Cu Ni tapes were obtained by rolling and recrystallization, and these tapes are suitable as substrates of the second generation high temperature superconducting tape. The t...The cube textured pure Ni and non magnetic Cu Ni tapes were obtained by rolling and recrystallization, and these tapes are suitable as substrates of the second generation high temperature superconducting tape. The texture of tapes was studied using Orientation Distribution Function (ODF) and φ scans. The results indicate that sharp cube texture of Cu 0 70 Ni 0.30 and pure Ni was formed at 1000 ℃ and that of Cu 0 85 Ni 0.15 was formed at 900 ℃. The intensities of cube texture differ from each other. Uniform equiaxial crystallites are formed in all the tapes and the size of Cu 0.85 Ni 0.15 is larger than that of Cu 0.70 Ni 0.30 and pure Ni. Annealing twin is formed in Cu 0.85 Ni 0.15 and Cu 0.70 Ni 0.30 .展开更多
A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model,...A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model, including lungs. A torso-cardiac vector model is used for a 12-lead electrocardiographic (ECG) and magneto-cardiogram (MCG) simulation study by using the boundary element method (BEM). Also, we obtain the MCG wave picture using a compound four-channel HTc.SQUID system in a magnetically shielded room. By comparing the simulated results and experimental results, we verify the cardiac vector model and then do a preliminary study of the forward problem of MCG and ECG. Therefore, the results show that the vector model is reasonable in cardiac electrophysiology.展开更多
NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. I...NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. It is found that the texture of NiO could be affected directly by the orientation and surface of substrate. X-ray diffraction (XRD) 2-2θ scan, φ-scan, and pole figure were employed to characterize the in-plane alignment and cube texture. X-ray φ-scan shows that NiO film is formed on Ni tape with high cube texture and a typical value at the full width at half maximum (FWHM) is ≤ 7.5°. Scanning electron microscopy was used to study the surface morphology of NiO films. No crack is found and the films appear dense. Such technique is simple and of low cost with perfect reproducibility, promising for developing long tapes.展开更多
Tc, Jc and Rs properties of large area double sided YBCO thin films deposited on LaAlO3 substrates by direct current sputtering were reported.Film thickness of the obtained thin films is over 300 nm, Tc > 90 K; Rs ...Tc, Jc and Rs properties of large area double sided YBCO thin films deposited on LaAlO3 substrates by direct current sputtering were reported.Film thickness of the obtained thin films is over 300 nm, Tc > 90 K; Rs can be as low as less than 1.0 mΩ(77 K, 10 GHz).Homogenousity of the properties around the plane was studied.Under the measnous distributions.Influences of substrate temperature and Ar and O2 pressures on properties of the double-sided thin films were discussed.展开更多
We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by ...We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by employing stepedge junctions (SEJs) and in flip-chip configuration with 12 mm×12 mm resonators. The step in the substrate was produced by Ar ion etching with step angles ranging from 47° to 61°, which is steep enough to ensure the formation of grain boundaries (GBs) at the step edges. The YBCO film was deposited using the pulsed laser deposition (PLD) technique with a film thickness half of the height of the substrate step. The inductance of the SQUID washer was designed to be about 157 pH. Under these circumstances, high performance YBCO RF SQUIDs were successfully fabricated with a typical flux-voltage transfer ratio of 83 mV/φ0, a white flux noise of 29 μφ0/√Hz, and the magnetic field sensitivity as high as 80 fT/√Hz. These devices have been applied in magnetocardiography and geological surveys.展开更多
In order to eliminate the influence of the large-amplitude magnetic field noise that has complicated magnetocardio- graphic studies since October 2009, we have performed high-accuracy measurement of the environmental ...In order to eliminate the influence of the large-amplitude magnetic field noise that has complicated magnetocardio- graphic studies since October 2009, we have performed high-accuracy measurement of the environmental magnetic field noise in the vicinity of Beijing Subway Line 4 using a three-component height Tc radio frequency (rf) superconducting quantum interference device (SQUID). By analysing the spatial form and other characteristics of the time and the fre- quency domains and by calculating the circumferential magnetic field distribution based on a duel-end feeding system model, we reach the following conclusions: (i) the main source of magnetic field noise is the magnetic field generated by thel subway trains, and (ii) the magnetic field interference results mainly from the imbalance between traction current and return rail current that is caused by the leakage current.展开更多
As a newly developed method for fabricating Josephson junctions,a focused helium ion beam has the advantage of producing reliable and reproducible junctions.We fabricated Josephson junctions with a focused helium ion ...As a newly developed method for fabricating Josephson junctions,a focused helium ion beam has the advantage of producing reliable and reproducible junctions.We fabricated Josephson junctions with a focused helium ion beam on our 50 nm YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films.We focused on the junction with irradiation doses ranging from 100 to 300 ions/nm and demonstrated that the junction barrier can be modulated by the ion dose and that within this dose range,the junctions behave like superconductor–normal conductor–superconductor junctions.The measurements of the I–V characteristics,Fraunhofer diffraction pattern,and Shapiro steps of the junctions clearly show AC and DC Josephson effects.Our findings demonstrate high reproducibility of junction fabrication using a focused helium ion beam and suggest that commercial devices based on this nanotechnology could operate at liquid nitrogen temperatures.展开更多
In research of YBCO coated conductors, the development of a oxide template for epitaxial growth of YBCO is very important. Matsumoto et al have demonstrated the potential of the surface oxidation epitaxial (SOE) route...In research of YBCO coated conductors, the development of a oxide template for epitaxial growth of YBCO is very important. Matsumoto et al have demonstrated the potential of the surface oxidation epitaxial (SOE) route for formation a cube textured NiO layer on nickel tapes. The epitaxial NiO functions as a buffer layer of chemical reaction between YBCO and nickel, and as a template for the epitaxial growth of YBCO. However, the surface quality of NiO is difficult to control and defects such as crack, spall and deep grooves exist in SOE NiO layer. A new approach combining sputtering and SOE method to obtain crack-free and cube textured NiO layer were reported. Ni tapes prepared by the combination of rolling and recrystallization were used for this work. A coating of Ni was first deposited on the tapes via magnetron sputtering. Then on the coating tapes, continuous and textured NiO layer were achieved by SOE technology.展开更多
There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense.The pursuit of a long service life and reutilization highly depends on the bearing ...There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense.The pursuit of a long service life and reutilization highly depends on the bearing components.However,the rolling element bearings(REBs)used in the existing rocket turbopumps present obvious and increasing limitations due to their mechanical contacting mode.For REBs,high rotational speed and long service life are two performance indexes that mutually restrict each other.To go beyond the DN value(the product of the bearing bore and rotational speed)limit of REBs,the major space powers have conducted substantial explorations on the use of new types of bearings to replace the REB.This review discusses,first,the crucial role of bearings in rocket turbopumps and the related structural improvements of REBs.Then,with the prospect of application to the next generation of reusable liquid rocket turbopumps,the bearing candidates investigated by major space powers are summarized comprehensively.These promising alternatives to REBs include fluid-film,foil,and magnetic bearings,together with the novel superconducting compound bearings recently proposed by our team.Our more than ten years of relevant research on fluid-film and magnetic bearings are also introduced.This review is meaningful for the development of long-life and highly reliable bearings to be used in future reusable rocket turbopumps.展开更多
Powder in tube process(PIT) was adopted for the fabrication of single filament Bi-2223 tapes, and a heat treatment process including the first heat treatment(HT1), intermediate rolling(IR), and second heat treat...Powder in tube process(PIT) was adopted for the fabrication of single filament Bi-2223 tapes, and a heat treatment process including the first heat treatment(HT1), intermediate rolling(IR), and second heat treatment(HT2) was performed. The phase evolution mechanism and microstructure changes during these heat treatment processes were systematically discussed. The influences of HT1 parameters on the phase evolution process of Bi-2223 tapes were discussed. With the optimized HT1 process, a proper Bi-2223 content of about 90% was achieved. HT2 process was also optimized by adding a post annealing process. An obvious increase of current capacity was obtained due to the enhancement of intergrain connections. Single filament Bi-2223 tapes with the critical current of Ic-90 A were fabricated with the optimized sintering process.展开更多
Ge_(50-x)Sb_xTe_(50) and Ge_(50-x)Bi_xTe_(50) ternary alloys were synthesized by vacuum melting at 1273 K with the starting materials of Ge, Bi, Sb, and Te. The lattice structures were analyzed based on X-ray ...Ge_(50-x)Sb_xTe_(50) and Ge_(50-x)Bi_xTe_(50) ternary alloys were synthesized by vacuum melting at 1273 K with the starting materials of Ge, Bi, Sb, and Te. The lattice structures were analyzed based on X-ray diffraction patterns, which could all be indexed to R3m rhombic structure. Electrical properties measurements revealed that the Ge-Sb-Te ternary alloys were p-type semiconductors with high electrical conductivity of 4.5×10~5S?m^(-1) near room temperature. And the maximum electrical property was obtained at Ge_45Sb_5Te_50, with the power factor of 2.49×10^(-3)W?m^(-1)K^(-2) at 640 K. Due to the existence of secondary phases, the electrical conductivity of Ge-Bi-Te system was lower and Seebeck coefficient was higher comparing with those of Ge-Sb-Te system.展开更多
Pure Ni and Ni alloy tapes with sharp cube texture and low-angle grain boundaries prepared by thermomechanical process were extensively used as substrates for coated conductor. The thermomechanical process usually inc...Pure Ni and Ni alloy tapes with sharp cube texture and low-angle grain boundaries prepared by thermomechanical process were extensively used as substrates for coated conductor. The thermomechanical process usually includes hot forging and cold rolling. In this study, a hot-rolling process between hot forging and cold rolling was induced. The influence of hot rolling on the cube texture of pure Ni was discussed. Sharp cube texture on pure Ni was obtained by suitable hot rolling, cold rolling, and recrystallization treatment. This deformation texture of tape was studied using orientation distribution function (ODF). Orientation mapping, content of the cube texture, and grain boundary distribution were performed using an EBSD system mounted on LEO-1450 SEM. The results show that the substrates that are hot rolled have a sharp cube texture and low-angle grain boundaries.展开更多
The CeO2 and Y2O3 buffer layers were deposited on the cube textured metallic Ni substrates by using reactive magnetron sputtering. Ar/H2 mixed atmosphere, which is used as pre-depositing gas, can effectively inhibit t...The CeO2 and Y2O3 buffer layers were deposited on the cube textured metallic Ni substrates by using reactive magnetron sputtering. Ar/H2 mixed atmosphere, which is used as pre-depositing gas, can effectively inhibit the formation of NiO. In addition, the linear relationship between pre-depositing time and total depositing time is required to ensure the epitaxial growth of the films. The growth conditions of CeO2 and Y2O3 were comparatively studied, and it is found that the windows of substrate temperatures and pressures for CeO2 films are wider than that for Y2O3 films.展开更多
The buffer layer CeO2 films were grown on cube textured metallic Ni substrates by using reactive magnetrun sputtering. Ar/H2 mixed atmosphere, which effectively inhibited the formation of NiO, was used as pre-depositi...The buffer layer CeO2 films were grown on cube textured metallic Ni substrates by using reactive magnetrun sputtering. Ar/H2 mixed atmosphere, which effectively inhibited the formation of NiO, was used as pre-depositing gas before CeO2 films were grown in Ar and 02. At 700 ℃ under the total pressure of 26 Pa,the pure c-axis orientation tilm was obtained. X-ray θ-2θscan, pole figure and φ-scan were used to observe the microstructure of the buffer layer. The resuits show that CeO2 film has strong cube texture and the FWHM is 9°. In addition, the CeO2 film is dense and crack-free.展开更多
A modified spark plasma sintering(SPS) technique was developed for the fabrication of Bi2Sr2CaCu2Ox(Bi-2212)superconducting bulks with better intergrain connections. The influences of the modified SPS process on t...A modified spark plasma sintering(SPS) technique was developed for the fabrication of Bi2Sr2CaCu2Ox(Bi-2212)superconducting bulks with better intergrain connections. The influences of the modified SPS process on the microstructures, intergrain connections, and related superconducting properties were systematically analyzed. The modified SPS process can not only increase the final density of the bulk samples but also enhance the texture structures. Clean grain boundaries were obtained instead of the intergrain amorphous layers. Therefore the intergranular properties were obviously improved. Due to the better intergrain connections and the stronger flux pinning properties, the critical current densities of the Bi-2212 bulks obtained via the modified SPS process were greatly increased. The obtained improvements imply the possibility for the modified SPS technique to be used for enhancing the superconducting properties of the Bi-2212 tapes.展开更多
Owing to the high performance, the second generation (2 G) high Tc superconducting tapes based on yttrium barium copper oxide have attracted much attention of the researchers worldwide to develop the processing tech...Owing to the high performance, the second generation (2 G) high Tc superconducting tapes based on yttrium barium copper oxide have attracted much attention of the researchers worldwide to develop the processing techniques for application. In recent years, a series of the achievements have made the 2 G tapes become the focus of the superconductor research. An overview of the recent progress of 2 G superconductor tapes was provided,展开更多
Ag-Mg-V alloy is prepared and investigated to develop a new sheath alloy used for BSCCO tapes. Bi-2223 Ag/AgMgV and Bi-2223 AgMgV/AgMgV tapes are studied with the help of stress-strain measurement, optical microstruct...Ag-Mg-V alloy is prepared and investigated to develop a new sheath alloy used for BSCCO tapes. Bi-2223 Ag/AgMgV and Bi-2223 AgMgV/AgMgV tapes are studied with the help of stress-strain measurement, optical microstructure and critical current Ic. The value of Ic at 77K and at magnetic field B = 0 is obtained to be 90A/cm^2 for the samples of Bi-2223 Ag/AgMgV tapes, which is higher than that of Bi-2223 AgMgV/AgMgV tapes (72A/cm^2). The resistance of AgMgV alloy, up to 0.37μΩ·cm at 77K, is higher than that of pure Ag (0.28μΩ·cm) after annealed at 840℃ for 4012, which is studied for reducing the ac loss. The values of the fracture strength and the maximum strain are 86 MPa and 0.50% for Bi-2223 Ag/AgMgV tapes and 108 MPa and 0.33% for Bi-2223 AgMgV/AgMgV tapes, respectively.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFF01014706 and 2017YFC0601901)the National Natural Science Foundation of China (Grant Nos.61571019 and 52177026)。
文摘Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.
基金supported by Xi'an Science and Technology Plan Project(Grant No.2024JH-CGKP-0073)。
文摘Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials.At present,practical superconducting materials include low-temperature superconductors such as NbTi and Nb3Sn,high-temperature superconductors such as Bi-2212,Bi-2223,YBCO,iron-based superconductors and MgB2.The development of low-temperature superconducting wires started earlier and has now entered the stage of industrialized production,showing obvious advantages in mechanical properties and cost under low temperature and middle-low magnetic field.However,due to the insufficient intrinsic superconducting performance,low-temperature superconductors are unable to exhibit excellent performance at high temperature or high fields.Further improvement of supercurrent carrying performance mainly depends on the enhancement of pinning ability.High-temperature superconductors have greater advantages in high temperature and high field,but many of them are still in the stage of further performance improvement.Many high-temperature superconductors are limited by the deficiency in their polycrystalline structure,and further optimization of intergranular connectivity is required.In addition,it is also necessary to further enhance their pinning ability.The numerous successful application instances of high-temperature superconducting wires and tapes also prove their tremendous potential in electric power applications.
基金supported by the National 863 Program of Ministry of Science and Technology of China (2007AA03Z216)
文摘Epitaxial YBCO superconducting films were deposited on the single crystal LaAlO3 (001) substrate by metal organic deposition method. All YBCO films were fired at 820 ℃ in humidity range of 2.6%-19.7% atmosphere. Microstructure of YBCO thin films was analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Superconducting properties of YBCO films were measured by four-probe method. XRD results showed that the second phase (such as BaF2)and a-axis-oriented grains existed in the films prepared at 2.6% humidity condition; a-axis-oriented grains increased in the film prepared at higher than 4.2% humidity condition; almost pure c-axias-oriented grains existed in the films fired at 4.2% humidity condition. Morphologies of the YBCO films showed that all films had a smooth and crack-free surface. YBCO film prepared at 4.2% humidity condition showed Jc value of 3.3 MA/cm^2 at 77 K in self-field.
文摘The cube textured pure Ni and non magnetic Cu Ni tapes were obtained by rolling and recrystallization, and these tapes are suitable as substrates of the second generation high temperature superconducting tape. The texture of tapes was studied using Orientation Distribution Function (ODF) and φ scans. The results indicate that sharp cube texture of Cu 0 70 Ni 0.30 and pure Ni was formed at 1000 ℃ and that of Cu 0 85 Ni 0.15 was formed at 900 ℃. The intensities of cube texture differ from each other. Uniform equiaxial crystallites are formed in all the tapes and the size of Cu 0.85 Ni 0.15 is larger than that of Cu 0.70 Ni 0.30 and pure Ni. Annealing twin is formed in Cu 0.85 Ni 0.15 and Cu 0.70 Ni 0.30 .
基金supported by the State Key Development Program for Basic Research of China (Grant No. 2011CBA00106)the National Natural Science Foundation of China (Grant Nos. 10674006, 81171421, and 61101046)the National High Technology Research and Development Program of China (Grant No. 2007AA03Z238)
文摘A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model, including lungs. A torso-cardiac vector model is used for a 12-lead electrocardiographic (ECG) and magneto-cardiogram (MCG) simulation study by using the boundary element method (BEM). Also, we obtain the MCG wave picture using a compound four-channel HTc.SQUID system in a magnetically shielded room. By comparing the simulated results and experimental results, we verify the cardiac vector model and then do a preliminary study of the forward problem of MCG and ECG. Therefore, the results show that the vector model is reasonable in cardiac electrophysiology.
基金Project supported by National 863 Programof Ministry of Science and Technology of China (2002AA306211 ,2004AA306130)
文摘NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. It is found that the texture of NiO could be affected directly by the orientation and surface of substrate. X-ray diffraction (XRD) 2-2θ scan, φ-scan, and pole figure were employed to characterize the in-plane alignment and cube texture. X-ray φ-scan shows that NiO film is formed on Ni tape with high cube texture and a typical value at the full width at half maximum (FWHM) is ≤ 7.5°. Scanning electron microscopy was used to study the surface morphology of NiO films. No crack is found and the films appear dense. Such technique is simple and of low cost with perfect reproducibility, promising for developing long tapes.
文摘Tc, Jc and Rs properties of large area double sided YBCO thin films deposited on LaAlO3 substrates by direct current sputtering were reported.Film thickness of the obtained thin films is over 300 nm, Tc > 90 K; Rs can be as low as less than 1.0 mΩ(77 K, 10 GHz).Homogenousity of the properties around the plane was studied.Under the measnous distributions.Influences of substrate temperature and Ar and O2 pressures on properties of the double-sided thin films were discussed.
基金supported by the National Basic Research Program of China(Grant No.2011CBA00106)the National Natural Science Foundation of China(Grant No.11074008)the Research Fund for the Doctoral Program of Higher Education,China(Grant No.20100001120006)
文摘We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by employing stepedge junctions (SEJs) and in flip-chip configuration with 12 mm×12 mm resonators. The step in the substrate was produced by Ar ion etching with step angles ranging from 47° to 61°, which is steep enough to ensure the formation of grain boundaries (GBs) at the step edges. The YBCO film was deposited using the pulsed laser deposition (PLD) technique with a film thickness half of the height of the substrate step. The inductance of the SQUID washer was designed to be about 157 pH. Under these circumstances, high performance YBCO RF SQUIDs were successfully fabricated with a typical flux-voltage transfer ratio of 83 mV/φ0, a white flux noise of 29 μφ0/√Hz, and the magnetic field sensitivity as high as 80 fT/√Hz. These devices have been applied in magnetocardiography and geological surveys.
基金supported by the State Key Development Program for Basic Research of China (Grant Nos. 2006CB601007 and 2011CBA00106)the National Natural Science Foundation of China (Grant No. 10674006)the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z238 and 2007AA03Z213)
文摘In order to eliminate the influence of the large-amplitude magnetic field noise that has complicated magnetocardio- graphic studies since October 2009, we have performed high-accuracy measurement of the environmental magnetic field noise in the vicinity of Beijing Subway Line 4 using a three-component height Tc radio frequency (rf) superconducting quantum interference device (SQUID). By analysing the spatial form and other characteristics of the time and the fre- quency domains and by calculating the circumferential magnetic field distribution based on a duel-end feeding system model, we reach the following conclusions: (i) the main source of magnetic field noise is the magnetic field generated by thel subway trains, and (ii) the magnetic field interference results mainly from the imbalance between traction current and return rail current that is caused by the leakage current.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0601901)the National Natural Science Foundation of China(Grant No.61571019)。
文摘As a newly developed method for fabricating Josephson junctions,a focused helium ion beam has the advantage of producing reliable and reproducible junctions.We fabricated Josephson junctions with a focused helium ion beam on our 50 nm YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films.We focused on the junction with irradiation doses ranging from 100 to 300 ions/nm and demonstrated that the junction barrier can be modulated by the ion dose and that within this dose range,the junctions behave like superconductor–normal conductor–superconductor junctions.The measurements of the I–V characteristics,Fraunhofer diffraction pattern,and Shapiro steps of the junctions clearly show AC and DC Josephson effects.Our findings demonstrate high reproducibility of junction fabrication using a focused helium ion beam and suggest that commercial devices based on this nanotechnology could operate at liquid nitrogen temperatures.
文摘In research of YBCO coated conductors, the development of a oxide template for epitaxial growth of YBCO is very important. Matsumoto et al have demonstrated the potential of the surface oxidation epitaxial (SOE) route for formation a cube textured NiO layer on nickel tapes. The epitaxial NiO functions as a buffer layer of chemical reaction between YBCO and nickel, and as a template for the epitaxial growth of YBCO. However, the surface quality of NiO is difficult to control and defects such as crack, spall and deep grooves exist in SOE NiO layer. A new approach combining sputtering and SOE method to obtain crack-free and cube textured NiO layer were reported. Ni tapes prepared by the combination of rolling and recrystallization were used for this work. A coating of Ni was first deposited on the tapes via magnetron sputtering. Then on the coating tapes, continuous and textured NiO layer were achieved by SOE technology.
基金Supported by National Natural Science Foundation of China(Grant No.51805131)Postdoctoral Research Foundation of China(Grant No.2018M640580)Fundamental Research Funds for the Central Universities(CN)Fundamental Research Funds for the Central Universities of China(Grant No.JZ2018HGBZ0155).
文摘There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense.The pursuit of a long service life and reutilization highly depends on the bearing components.However,the rolling element bearings(REBs)used in the existing rocket turbopumps present obvious and increasing limitations due to their mechanical contacting mode.For REBs,high rotational speed and long service life are two performance indexes that mutually restrict each other.To go beyond the DN value(the product of the bearing bore and rotational speed)limit of REBs,the major space powers have conducted substantial explorations on the use of new types of bearings to replace the REB.This review discusses,first,the crucial role of bearings in rocket turbopumps and the related structural improvements of REBs.Then,with the prospect of application to the next generation of reusable liquid rocket turbopumps,the bearing candidates investigated by major space powers are summarized comprehensively.These promising alternatives to REBs include fluid-film,foil,and magnetic bearings,together with the novel superconducting compound bearings recently proposed by our team.Our more than ten years of relevant research on fluid-film and magnetic bearings are also introduced.This review is meaningful for the development of long-life and highly reliable bearings to be used in future reusable rocket turbopumps.
基金Funded by the National Natural Science Foundation of China(No.51472206)the National ITER Program of China(2015GB115001)the Program for Innovative Research Team in Shaanxi Province(No.2013KCT-07)
文摘Powder in tube process(PIT) was adopted for the fabrication of single filament Bi-2223 tapes, and a heat treatment process including the first heat treatment(HT1), intermediate rolling(IR), and second heat treatment(HT2) was performed. The phase evolution mechanism and microstructure changes during these heat treatment processes were systematically discussed. The influences of HT1 parameters on the phase evolution process of Bi-2223 tapes were discussed. With the optimized HT1 process, a proper Bi-2223 content of about 90% was achieved. HT2 process was also optimized by adding a post annealing process. An obvious increase of current capacity was obtained due to the enhancement of intergrain connections. Single filament Bi-2223 tapes with the critical current of Ic-90 A were fabricated with the optimized sintering process.
基金Funded by the Science and Technology Plan of Taizhou City of Zhejiang Province(1601KY69)
文摘Ge_(50-x)Sb_xTe_(50) and Ge_(50-x)Bi_xTe_(50) ternary alloys were synthesized by vacuum melting at 1273 K with the starting materials of Ge, Bi, Sb, and Te. The lattice structures were analyzed based on X-ray diffraction patterns, which could all be indexed to R3m rhombic structure. Electrical properties measurements revealed that the Ge-Sb-Te ternary alloys were p-type semiconductors with high electrical conductivity of 4.5×10~5S?m^(-1) near room temperature. And the maximum electrical property was obtained at Ge_45Sb_5Te_50, with the power factor of 2.49×10^(-3)W?m^(-1)K^(-2) at 640 K. Due to the existence of secondary phases, the electrical conductivity of Ge-Bi-Te system was lower and Seebeck coefficient was higher comparing with those of Ge-Sb-Te system.
基金Project supported bythe National Basic Research Program China (2006CB601005)
文摘Pure Ni and Ni alloy tapes with sharp cube texture and low-angle grain boundaries prepared by thermomechanical process were extensively used as substrates for coated conductor. The thermomechanical process usually includes hot forging and cold rolling. In this study, a hot-rolling process between hot forging and cold rolling was induced. The influence of hot rolling on the cube texture of pure Ni was discussed. Sharp cube texture on pure Ni was obtained by suitable hot rolling, cold rolling, and recrystallization treatment. This deformation texture of tape was studied using orientation distribution function (ODF). Orientation mapping, content of the cube texture, and grain boundary distribution were performed using an EBSD system mounted on LEO-1450 SEM. The results show that the substrates that are hot rolled have a sharp cube texture and low-angle grain boundaries.
文摘The CeO2 and Y2O3 buffer layers were deposited on the cube textured metallic Ni substrates by using reactive magnetron sputtering. Ar/H2 mixed atmosphere, which is used as pre-depositing gas, can effectively inhibit the formation of NiO. In addition, the linear relationship between pre-depositing time and total depositing time is required to ensure the epitaxial growth of the films. The growth conditions of CeO2 and Y2O3 were comparatively studied, and it is found that the windows of substrate temperatures and pressures for CeO2 films are wider than that for Y2O3 films.
文摘The buffer layer CeO2 films were grown on cube textured metallic Ni substrates by using reactive magnetrun sputtering. Ar/H2 mixed atmosphere, which effectively inhibited the formation of NiO, was used as pre-depositing gas before CeO2 films were grown in Ar and 02. At 700 ℃ under the total pressure of 26 Pa,the pure c-axis orientation tilm was obtained. X-ray θ-2θscan, pole figure and φ-scan were used to observe the microstructure of the buffer layer. The resuits show that CeO2 film has strong cube texture and the FWHM is 9°. In addition, the CeO2 film is dense and crack-free.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00104)the National Natural Science Foundation of China(Grant No.51472206)+1 种基金the ITER Project of China(Grant No.2013GB110001)the Program for Innovative Research Team in Shaanxi Province,China(Grant No.2013KCT-07)
文摘A modified spark plasma sintering(SPS) technique was developed for the fabrication of Bi2Sr2CaCu2Ox(Bi-2212)superconducting bulks with better intergrain connections. The influences of the modified SPS process on the microstructures, intergrain connections, and related superconducting properties were systematically analyzed. The modified SPS process can not only increase the final density of the bulk samples but also enhance the texture structures. Clean grain boundaries were obtained instead of the intergrain amorphous layers. Therefore the intergranular properties were obviously improved. Due to the better intergrain connections and the stronger flux pinning properties, the critical current densities of the Bi-2212 bulks obtained via the modified SPS process were greatly increased. The obtained improvements imply the possibility for the modified SPS technique to be used for enhancing the superconducting properties of the Bi-2212 tapes.
文摘Owing to the high performance, the second generation (2 G) high Tc superconducting tapes based on yttrium barium copper oxide have attracted much attention of the researchers worldwide to develop the processing techniques for application. In recent years, a series of the achievements have made the 2 G tapes become the focus of the superconductor research. An overview of the recent progress of 2 G superconductor tapes was provided,
文摘Ag-Mg-V alloy is prepared and investigated to develop a new sheath alloy used for BSCCO tapes. Bi-2223 Ag/AgMgV and Bi-2223 AgMgV/AgMgV tapes are studied with the help of stress-strain measurement, optical microstructure and critical current Ic. The value of Ic at 77K and at magnetic field B = 0 is obtained to be 90A/cm^2 for the samples of Bi-2223 Ag/AgMgV tapes, which is higher than that of Bi-2223 AgMgV/AgMgV tapes (72A/cm^2). The resistance of AgMgV alloy, up to 0.37μΩ·cm at 77K, is higher than that of pure Ag (0.28μΩ·cm) after annealed at 840℃ for 4012, which is studied for reducing the ac loss. The values of the fracture strength and the maximum strain are 86 MPa and 0.50% for Bi-2223 Ag/AgMgV tapes and 108 MPa and 0.33% for Bi-2223 AgMgV/AgMgV tapes, respectively.