This paper presents a nonlinear multidimensional scaling model, called kernelized fourth quantifica- tion theory, which is an integration of kernel techniques and the fourth quantification theory. The model can deal w...This paper presents a nonlinear multidimensional scaling model, called kernelized fourth quantifica- tion theory, which is an integration of kernel techniques and the fourth quantification theory. The model can deal with the problem of mineral prediction without defining a training area. In mineral target prediction, the pre-defined statistical cells, such as grid cells, can be implicitly transformed using kernel techniques from input space to a high-dimensional feature space, where the nonlinearly separable clusters in the input space are ex- pected to be linearly separable. Then, the transformed cells in the feature space are mapped by the fourth quan- tifieation theory onto a low-dimensional scaling space, where the sealed cells can be visually clustered according to their spatial locations. At the same time, those cells, which are far away from the cluster center of the majority of the sealed cells, are recognized as anomaly cells. Finally, whether the anomaly cells can serve as mineral potential target cells can be tested by spatially superimposing the known mineral occurrences onto the anomaly ceils. A case study shows that nearly all the known mineral occurrences spatially coincide with the anomaly cells with nearly the smallest scaled coordinates in one-dimensional sealing space. In the case study, the mineral target cells delineated by the new model are similar to those predicted by the well-known WofE model.展开更多
基金supported by National Natural Science Foundation of China (No.40872193)
文摘This paper presents a nonlinear multidimensional scaling model, called kernelized fourth quantifica- tion theory, which is an integration of kernel techniques and the fourth quantification theory. The model can deal with the problem of mineral prediction without defining a training area. In mineral target prediction, the pre-defined statistical cells, such as grid cells, can be implicitly transformed using kernel techniques from input space to a high-dimensional feature space, where the nonlinearly separable clusters in the input space are ex- pected to be linearly separable. Then, the transformed cells in the feature space are mapped by the fourth quan- tifieation theory onto a low-dimensional scaling space, where the sealed cells can be visually clustered according to their spatial locations. At the same time, those cells, which are far away from the cluster center of the majority of the sealed cells, are recognized as anomaly cells. Finally, whether the anomaly cells can serve as mineral potential target cells can be tested by spatially superimposing the known mineral occurrences onto the anomaly ceils. A case study shows that nearly all the known mineral occurrences spatially coincide with the anomaly cells with nearly the smallest scaled coordinates in one-dimensional sealing space. In the case study, the mineral target cells delineated by the new model are similar to those predicted by the well-known WofE model.