The growing demand for electric vehicles highlights the need for energy storage solutions with higher densities,spotlighting Li metal anodes as potential successors to traditional Li-ion batteries(LIBs).Achieving long...The growing demand for electric vehicles highlights the need for energy storage solutions with higher densities,spotlighting Li metal anodes as potential successors to traditional Li-ion batteries(LIBs).Achieving longer calendar aging life for Li metal anodes is crucial for their practical use,given their propensity for corrosion due to a low redox potential,which leads to compromised cycling stability and significant capacity loss during storage.Recent research investigated that this susceptibility is mainly dependent on the surface area of Li metal anode and the properties of the solid electrolyte interphase(SEI),particularly its stability and growth rate.Our research adds to this understanding by demonstrating that the amount of Li plating is a key factor in its corrosion during open-circuit storage,as assessed across various electrolytes.We discovered that increasing the Li plating amount effectively reduces Coulombic efficiency(C.E.)loss during aging,due to a lower surface area-to-Li ratio.This implies that the choice of electrolyte for optimal storage life should consider the amount of Li plating,with higher capacities promoting better storage characteristics.展开更多
A low-carbon future demands more affordable batteries utilizing abundant elements with sustainable end-of-life battery management.Despite the economic and environmental advantages of Li-MnO_(2)batteries,their applica-...A low-carbon future demands more affordable batteries utilizing abundant elements with sustainable end-of-life battery management.Despite the economic and environmental advantages of Li-MnO_(2)batteries,their applica-tion so far has been largely constrained to primary batteries.Here,we demonstrate that one of the major limiting factors preventing the stable cycling of Li-MnO_(2)batteries,Mn dissolution,can be effectively mitigated by employing a common ether electrolyte,1 mol/L lithium bis(trifluorometha-nesulfonyl)imide(LiTFSI)in 1,3-dioxane(DOL)/1,2-dimethoxyethane(DME).We discover that the suppression of this dissolution enables highly reversible cycling of the MnO_(2)cathode regardless of the synthesized phase and morphology.Moreover,we find that both the LiPF_(6)salt and carbonate solvents present in conventional electrolytes are responsible for previous cycling challenges.The ether electrolyte,paired with MnO_(2)cathodes is able to demonstrate stable cycling performance at various rates,even at elevated temperature such as 60℃.Our discovery not only represents a defining step in Li-MnO_(2)batteries with extended life but provides design criteria of electrolytes for vast manganese-based cathodes in rechargeable batteries.展开更多
基金supported by Intelligence Advanced Research Projects Activity under Robust Energy Sources for Intelligence Logistics In Extreme,Novel and Challenging Environments(RESILIENCE)program.
文摘The growing demand for electric vehicles highlights the need for energy storage solutions with higher densities,spotlighting Li metal anodes as potential successors to traditional Li-ion batteries(LIBs).Achieving longer calendar aging life for Li metal anodes is crucial for their practical use,given their propensity for corrosion due to a low redox potential,which leads to compromised cycling stability and significant capacity loss during storage.Recent research investigated that this susceptibility is mainly dependent on the surface area of Li metal anode and the properties of the solid electrolyte interphase(SEI),particularly its stability and growth rate.Our research adds to this understanding by demonstrating that the amount of Li plating is a key factor in its corrosion during open-circuit storage,as assessed across various electrolytes.We discovered that increasing the Li plating amount effectively reduces Coulombic efficiency(C.E.)loss during aging,due to a lower surface area-to-Li ratio.This implies that the choice of electrolyte for optimal storage life should consider the amount of Li plating,with higher capacities promoting better storage characteristics.
基金supported by NSF through the UC San Diego Materials Research Science and Engineering Center(UCSD MRSEC)DMR-2011924Part of the work used the UCSD-MTI Battery Fabrication Facility and the UCSDArbin Battery Testing Facility.Electron microscopic characterization was performed at the San Diego Nanotechnology Infrastructure(SDNI)of UCSD,a member of the National Nanotechnology Coordinated Infrastructure,which is supported by the National Science Foundation(Grant No.ECCS-1542148)Use of the Stanford Synchrotron Radiation Light source,SLAC National Accelerator Laboratory,is supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,under Contract No.DE-AC02-76SF00515.
文摘A low-carbon future demands more affordable batteries utilizing abundant elements with sustainable end-of-life battery management.Despite the economic and environmental advantages of Li-MnO_(2)batteries,their applica-tion so far has been largely constrained to primary batteries.Here,we demonstrate that one of the major limiting factors preventing the stable cycling of Li-MnO_(2)batteries,Mn dissolution,can be effectively mitigated by employing a common ether electrolyte,1 mol/L lithium bis(trifluorometha-nesulfonyl)imide(LiTFSI)in 1,3-dioxane(DOL)/1,2-dimethoxyethane(DME).We discover that the suppression of this dissolution enables highly reversible cycling of the MnO_(2)cathode regardless of the synthesized phase and morphology.Moreover,we find that both the LiPF_(6)salt and carbonate solvents present in conventional electrolytes are responsible for previous cycling challenges.The ether electrolyte,paired with MnO_(2)cathodes is able to demonstrate stable cycling performance at various rates,even at elevated temperature such as 60℃.Our discovery not only represents a defining step in Li-MnO_(2)batteries with extended life but provides design criteria of electrolytes for vast manganese-based cathodes in rechargeable batteries.