Pre-ohmic-annealing(POA)treatment of P-GaN/AlN/AlGaN epitaxy under N_(2)atmosphere was demonstrated to effectively achieve good p-type ohmic contact as well as decreased epitaxy sheet resistance.Ohmic contact resistan...Pre-ohmic-annealing(POA)treatment of P-GaN/AlN/AlGaN epitaxy under N_(2)atmosphere was demonstrated to effectively achieve good p-type ohmic contact as well as decreased epitaxy sheet resistance.Ohmic contact resistance(Rc)extracted by transfer length method reduced from 38 to 23Ω·mm with alleviated contact barrier height from 0.55 to 0.51 eV after POA treatment.X-ray photoelectron spectroscopy and Hall measurement confirmed that POA treatment was able to reduce surface state density and improve the hole concentration of p-GaN.Due to the decreased Rc and improved two-dimensional hole gas(2DHG)density,an outstanding-performance GaN E-mode p-channel MOSFET was successfully realized.展开更多
Developing wide-temperature and high-safety lithium-ion batteries(LIBs)presents significant challenges attributed to the absence of suitable solvents possessing broad liquid range and non-flammability properties.γ-Bu...Developing wide-temperature and high-safety lithium-ion batteries(LIBs)presents significant challenges attributed to the absence of suitable solvents possessing broad liquid range and non-flammability properties.γ-Butyrolactone(GBL)has emerged as a promising solvent;however,its incompatibility with graphite anode has hindered its application.This limitation necessitates a comprehensive investigation into the underlying mechanisms and potential solutions.In this study,we achieve a molecular-level understanding of the perplexing interphase formation process by employing in-situ spectroelectrochemical techniques and density function calculations.Our findings reveal that,even at high salt concentrations,GBL consistently occupies the primary Li^(+)solvation sheath,leading to extensive GBL decomposition and the formation of a high-impedance and inorganic-poor solid-electrolyte interphase(SEI)layer.Contrary to manipulating solvation structures,our research demonstrates that the utilization of filmforming additives with higher reduction potential facilitates the pre-establishment of a robust SEI film on the graphite anode.This approach effectively inhibits GBL decomposition and significantly enhances the battery's lifespan.This study provides the first reported intrinsic understanding of the unique GBLgraphite incompatibility and offers valuable insights for the development of wide-temperature and high-safety LIBs.展开更多
As promising anode candidates for potassium-ion batteries(PIBs),antimony sulfide(Sb_(2)S_(3))possesses high specific capacity but suffers from massive volume expansion and sluggish kinetics due to the large K^(+)inser...As promising anode candidates for potassium-ion batteries(PIBs),antimony sulfide(Sb_(2)S_(3))possesses high specific capacity but suffers from massive volume expansion and sluggish kinetics due to the large K^(+)insertion,resulting in inferior cycling and rate performance.To address these challenges,a yolk-shell structured Sb_(2)S_(3)confined in N,S co-doped hollow carbon nanorod(YS-Sb_(2)S_(3)@NSC)working as a viable anode for PIBs is proposed.As directly verified by in situ transmission electron microscopy(TEM),the buffer space between the Sb_(2)S_(3)core and thin carbon shell can effectively accommodate the large expansion stress of Sb_(2)S_(3)without cracking the shell and the carbon shell can accelerate electron transport and K^(+)diffusion,which plays a significant role in reinforcing the structural stability and facilitating charge transfer.As a result,the YS-Sb_(2)S_(3)@NSC electrode delivers a high reversible K^(+)storage capacity of 594.58 m A h g^(-1)at 0.1 A g^(-1)and a long cycle life with a slight capacity degradation(0.01%per cycle)for 2000 cycles at 1 A g^(-1)while maintaining outstanding rate capability.Importantly,utilizing in in situ/ex situ microscopic and spectroscopic characterizations,the origins of performance enhancement and K^(+)storage mechanism of Sb_(2)S_(3)were clearly elucidated.This work provides valuable insights into the rational design of high-performance and durable transition metal sulfides-based anodes for PIBs.展开更多
Lithium metal is regarded as the ultimate negative electrode material for secondary batteries due to its high energy density.However,it suffers from poor cycling stability because of its high reactivity with liquid el...Lithium metal is regarded as the ultimate negative electrode material for secondary batteries due to its high energy density.However,it suffers from poor cycling stability because of its high reactivity with liquid electrolytes.Therefore,continuous efforts have been put into improving the cycling Coulombic efficiency(CE)to extend the lifespan of the lithium metal negative electrode.Herein,we report that using dual-salt additives of LiPF_(6) and LiNO_(3) in an ether solvent-based electrolyte can significantly improve the cycling stability and rate capability of a Li-carbon(Li-CNT)composite.As a result,an average cycling CE as high as 99.30% was obtained for the Li-CNT at a current density of 2.5 mA cm^(-2) and an negative electrode to positive electrode capacity(N/P)ratio of 2.The cycling stability and rate capability enhancement of the Li-CNT negative electrode could be attributed to the formation of a better solid electrolyte interphase layer that contains both inorganic components and organic polyether.The former component mainly originates from the decomposition of the LiNO_(3) additive,while the latter comes from the LiPF_(6)-induced ring-opening polymerization of the ether solvent.This novel surface chemistry significantly improves the CE of Li negative electrode,revealing its importance for the practical application of lithium metal batteries.展开更多
High quality gallium oxide(Ga_2O_3) thin films are deposited by remote plasma-enhanced atomic layer deposition(RPEALD) with trimethylgallium(TMG) and oxygen plasma as precursors. By introducing in-situ NH3 plasma pret...High quality gallium oxide(Ga_2O_3) thin films are deposited by remote plasma-enhanced atomic layer deposition(RPEALD) with trimethylgallium(TMG) and oxygen plasma as precursors. By introducing in-situ NH3 plasma pretreatment on the substrates, the deposition rate of Ga_2O_3 films on Si and GaN are remarkably enhanced, reached to 0.53 and 0.46 ?/cycle at 250 °C,respectively. The increasing of deposition rate is attributed to more hydroxyls(–OH) generated on the substrate surfaces after NH3 pretreatment, which has no effect on the stoichiometry and surface morphology of the oxide films, but only modifies the surface states of substrates by enhancing reactive site density. Ga_2O_3 film deposited on GaN wafer is crystallized at 250 °C, with an epitaxial interface between Ga_2O_3 and GaN clearly observed. This is potentially very important for reducing the interface state density through high quality passivation.展开更多
Black phosphorous(BP),an excellent two-dimensional(2D)monoelemental layered p-type semiconductor material with high carrier mobility and thickness-dependent tunable direct bandgap structure,has been widely applied in ...Black phosphorous(BP),an excellent two-dimensional(2D)monoelemental layered p-type semiconductor material with high carrier mobility and thickness-dependent tunable direct bandgap structure,has been widely applied in various devices.As the essential building blocks for modern electronic and optoelectronic devices,high quality PN junctions based on semiconductors have attracted widespread attention.Herein,we report a junction field-effect transistor(JFET)by integrating narrow-gap p-type BP and ultra-wide gap n-typeβ-Ga2O3 nanoflakes for the first time.BP andβ-Ga2O3 form a vertical van der Waals(vdW)heterostructure by mechanically exfoliated method.The BP/β-Ga2O3 vdW heterostructure exhibits remarkable PN diode rectifying characteristics with a high rectifying ratio about 107 and a low reverse current around pA.More interestingly,by using the BP as the gate andβ-Ga2O3 as the channel,the BP/β-Ga2O3 JFET devices demonstrate excellent n-channel JFET characteristics with the on/off ratio as high as 107,gate leakage current around as low as pA,maximum transconductance(gm)up to 25.3μS and saturation drain current(IDSS)of 16.5μA/μm.Moreover,it has a pinch-off voltage of–20 V and a minimum subthreshold swing of 260 mV/dec.These excellent n-channel JFET characteristics will expand the application of BP in future nanoelectronic devices.展开更多
Succinonitrile(SN)-based polymer plastic crystal electrolytes(PPCEs)have attracted considerable attention as solid-state electrolytes owing to their high ionic conductivities similar to those of liquid electrolytes,ex...Succinonitrile(SN)-based polymer plastic crystal electrolytes(PPCEs)have attracted considerable attention as solid-state electrolytes owing to their high ionic conductivities similar to those of liquid electrolytes,excellent contacts with the electrodes,and good mechanic properties.As a crucial property of a solid-state electrolyte,the ionic conductivity of the PPCE directly depends on the interactions between the constituent parts including the polymer,lithium salt,and SN.A few studies have focused on the effects of polymer–lithium–salt and polymer–SN interactions on the PPCE ionic conductivity.Nevertheless,the impact of the lithium–salt–SN combination on the PPCE ionic conductivity has not been analyzed.In particular,tuning of the lithium-salt–SN interaction to fabricate a subzero PPCE with a high low-temperature ionic conductivity has not been reported.In this study,we design and fabricate five PPCE membranes with different weight ratios of Li N(SO2 CF3)2(Li TFSI)and SN to investigate the effect of the Li TFSI–SN interaction on the PPCE ionic conductivity.The ionic conductivities of the five PPCEs are investigated in the temperature range of–20 to 60°C by electro-chemical impedance spectroscopy.The interaction is analyzed by Fourier-transform infrared spectroscopy,Raman spectroscopy,and differential scanning calorimetry.The Li TFSI–SN interaction significantly influences the melting point of the PPCE,dissociation of the Li TFSI salt,and thus the PPCE ionic conductivity.By tuning the Li TFSI–SN interaction,a subzero workable PPCE membrane having an excellent low-temperature ionic conductivity(6×10-4 S cm–1 at 0°C)is obtained.The electro-chemical performance of the optimal PPCE is evaluated by using a Li Co O2/PPCE/Li4 Ti5 O12 cell,which confirms the application feasibility of the proposed quasisolid-state electrolyte in subzero workable lithium-ion batteries.展开更多
Hydrogels offer tissue-like softness,stretchability,fracture toughness,ionic conductivity,and compatibility with biological tissues,which make them promising candidates for fabricating flexible bioelectronics.A soft h...Hydrogels offer tissue-like softness,stretchability,fracture toughness,ionic conductivity,and compatibility with biological tissues,which make them promising candidates for fabricating flexible bioelectronics.A soft hydrogel film offers an ideal interface to directly bridge thin-film electronics with the soft tissues.However,it remains difficult to fabricate a soft hydrogel film with an ultrathin configuration and excellent mechanical strength.Here we report a biological tissue-inspired ultrasoft microfiber composite ultrathin(<5μm)hydrogel film,which is currently the thinnest hydrogel film as far as we know.The embedded microfibers endow the composite hydrogel with prominent mechanical strength(tensile stress~6 MPa)and anti-tearing property.Moreover,our microfiber composite hydrogel offers the capability of tunable mechanical properties in a broad range,allowing for matching the modulus of most biological tissues and organs.The incorporation of glycerol and salt ions imparts the microfiber composite hydrogel with high ionic conductivity and prominent anti-dehydration behavior.Such microfiber composite hydrogels are promising for constructing attaching-type flexible bioelectronics to monitor biosignals.展开更多
Due to the wide application of UV-A(320 nm–400 nm)and UV-C(200 nm–280 nm)photodetectors,dual-wavelength(UV-A/UV-C)photodetectors are promising for future markets.A dual-wavelength UV photodetector based on vertical(...Due to the wide application of UV-A(320 nm–400 nm)and UV-C(200 nm–280 nm)photodetectors,dual-wavelength(UV-A/UV-C)photodetectors are promising for future markets.A dual-wavelength UV photodetector based on vertical(Al,Ga)N nanowires and graphene has been demonstrated successfully,in which graphene is used as a transparent electrode.Both UV-A and UV-C responses can be clearly detected by the device,and the rejection ratio(R254 nm/R450 nm)exceeds35 times at an applied bias of-2 V.The short response time of the device is less than 20 ms.Furthermore,the underlying mechanism of double ultraviolet responses has also been analyzed systematically.The dual-wavelength detections could mainly result from the appropriate ratio of the thicknesses and the enough energy band difference of(Al,Ga)N and Ga N sections.展开更多
B-containing electrolyte additives are widely used to enhance the cycle performance at low temperature and the rate capability of lithium-ion batteries by constructing an efficient cathode electrolyte interphase(CEI)t...B-containing electrolyte additives are widely used to enhance the cycle performance at low temperature and the rate capability of lithium-ion batteries by constructing an efficient cathode electrolyte interphase(CEI)to facilitate the rapid Li+migration.Nevertheless,its wide-temperature application has been limited by the instability of B-derived CEI layer at high temperature.Herein,dual electrolyte additives,consisting of lithium tetraborate(Li_(2)TB)and 2,4-difluorobiphenyl(FBP),are proposed to boost the widetemperature performances of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)cathode.Theoretical calculation and electrochemical performances analyses indicate that Li_(2)TB and FBP undergo successive decomposition to form a unique dual-layer CEI.FBP acts as a synergistic filming additive to Li_(2)TB,enhancing the hightemperature performance of NCM cathode while preserving the excellent low-temperature cycle stability and the superior rate capability conferred by Li_(2)TB additive.Therefore,the capacity retention of NCM‖Li cells using optimal FBP-Li_(2)TB dual electrolyte additives increases to 100%after 200 cycles at-10℃,99%after 200 cycles at 25℃,and 83%after 100 cycles at 55℃,respectively,much superior to that of base electrolyte(63%/69%/45%).More surprisingly,galvanostatic c ha rge/discharge experiments at different temperatures reveal that NCM‖Li cells using FBP-Li_(2)TB additives can operate at temperatures ranging from-40℃to 60℃.This synergistic interphase modification utilizing dual electrolyte additives to construct a unique dual-layer CEI adaptive to a wide temperature range,provides valuable insights to the practical applications of NCM cathodes for all-climate batteries.展开更多
Separation technology is an indispensable step in the preparation of freestanding GaN substrate. In this paper, a largearea freestanding GaN layer was separated from the substrate by an electrochemical liftoff process...Separation technology is an indispensable step in the preparation of freestanding GaN substrate. In this paper, a largearea freestanding GaN layer was separated from the substrate by an electrochemical liftoff process on a sandwich structure composed of an Fe-doped GaN substrate, a highly conductive Si-doped sacrificial layer and a top Fe-doped layer grown by hydride vapor phase epitaxy(HVPE). The large difference between the resistivity in the Si-doped layer and Fe-doped layer resulted in a sharp interface between the etched and unetched layer. It was found that the etching rate increased linearly with the applied voltage, while it continuously decreased with the electrochemical etching process as a result of the mass transport limitation. Flaky GaN pieces and nitrogen gas generated from the sacrificial layer by electrochemical etching were recognized as the main factors responsible for the blocking of the etching channel. Hence, a thick Si-doped layer grown by HVPE was used as the sacrificial layer to alleviate this problem. Moreover, high temperature and ultrasonic oscillation were also found to increase the etching rate. Based on the results above, we succeeded in the liftoff of ~ 1.5 inch GaN layer. This work could help reduce the cost of freestanding GaN substrate and identifies a new way for mass production.展开更多
Enabling lithium-ion batteries(LIBs)to operate in a wider temperature range,e.g.,as low or high as possible or capable of both,is an urgent need and shared goal.Here we report,for the first time,a low-temperature elec...Enabling lithium-ion batteries(LIBs)to operate in a wider temperature range,e.g.,as low or high as possible or capable of both,is an urgent need and shared goal.Here we report,for the first time,a low-temperature electrolyte consisting of traditional ethylene carbonate,methyl acetate,butyronitrile solvents,and 1 M LiPF_(6) salt,attributed to its very low freezing point(T_(f)=-126.3℃)and high ion conductivity at extremely low temperatures(0.21 m S/cm at-100℃),successfully extends the service temperature of a practical 9.6 Ah LIB down to-100℃(49.6%capacity retention compared to that at room temperature),which is the lowest temperature reported for practical cells so far as we know,and is lower than the lowest natural temperature(-89.2℃)recorded on earth.Meanwhile,the high-temperature performance of lithium-ion batteries is not affected.The capacity retention is 88.2%and 83.4%after 800 cycles at 25℃and 45℃,respectively.The progress also makes LIB a proper power supplier for space vehicles in astronautic explorations.展开更多
Dimethyl oxalate(DMO) hydrogenation is a crucial step in the coal to ethylene glycol(CTEG) process.Herein, Cu catalyst supported on fibrous mesoporous silica(Cu/FMS) was synthesized via liquid phase deposition techniq...Dimethyl oxalate(DMO) hydrogenation is a crucial step in the coal to ethylene glycol(CTEG) process.Herein, Cu catalyst supported on fibrous mesoporous silica(Cu/FMS) was synthesized via liquid phase deposition technique and applied for the DMO hydrogenation to EG. The catalyst exhibited a remarkable EG selectivity of 96.95% and maintained its activity without deactivation for 1000 h. Fibers of FMS support and liquid phase deposition technology cooperated to give high dispersion of Cu species in the Cu/FMS catalyst, resulting in a high Cu surface area. The formation of Si—O—Cu during catalyst preparation process increased the Cu^(+)/(Cu^(0)+ Cu^(+)) ratio and enhanced the thermal and valence stability of Cu species.The high Cu^(+) surface area and Cu stability(thermal and valence stability) of the Cu/FMS catalyst were key factors for achieving superior EG selectivity and ultra-high stability.展开更多
As a special order of electronic correlation induced by spatial modulation, the charge density wave(CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning-tunneling microscopy in...As a special order of electronic correlation induced by spatial modulation, the charge density wave(CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning-tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the(■) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe_(2) film. Combining the variable-temperature angle-resolved photoemission spectroscopic(ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts △_(1) and△_(2). The gap part ?1 that closes around ~ 150 K is accompanied with the vanish of the(√7×√3) CDW phase. While another momentum-dependent gap part △_(2) can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure △_(1) +△_(2), which suggests different forming mechanisms between the(√7×√3) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe_(2) film as a two-dimensional(2D) material.展开更多
We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb_(2)GeTe_(4)saturable absorber(SA).The Nb_(2)GeTe_(4)SA triggers passive Q-switching of the laser,and an un-pumped Yb-doped fiber to...We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb_(2)GeTe_(4)saturable absorber(SA).The Nb_(2)GeTe_(4)SA triggers passive Q-switching of the laser,and an un-pumped Yb-doped fiber together with a 0.08-nmbandwidth polarization-maintaining fiber Bragg grating(FBG)acts as an ultra-narrow bandwidth filter to realize singlelongitudinal-mode(SLM)oscillation.The devices used in the laser are all kept polarized,so as to ensure linearly polarized laser output.Stable SLM linearly polarized Q-switching operation at 1064.6 nm is successfully achieved,producing a laser with a shortest pulse width of 1.36μs,a linewidth of 28.4 MHz,a repetition rate of 28.3 kHz-95.9 kHz,and a polarization extinction ratio of about 30 dB.It is believed that the single-frequency linearly polarized pulsed fiber laser studied in this paper has great application value in gravitational wave detection,beam combining,nonlinear frequency conversion,and other fields.展开更多
Spin injection and detection in bulk GaN were investigated by performing magnetotransport measurements at low temperatures.A non-local four-terminal lateral spin valve device was fabricated with Co/GaN Schottky contac...Spin injection and detection in bulk GaN were investigated by performing magnetotransport measurements at low temperatures.A non-local four-terminal lateral spin valve device was fabricated with Co/GaN Schottky contacts.The spin injection efficiency of 21%was achieved at 1.7 K.It was confirmed that the thin Schottky barrier formed between the heavily ndoped GaN and Co was conducive to the direct spin tunneling,by reducing the spin scattering relaxation through the interface states.展开更多
We report InGaN/GaN multi-quantum well (MQW) solar cells with a comparatively high open-circuit voltage and good concentration properties.Thc open circuit voltage (Voc) keeps increasing logarithmically with concentrat...We report InGaN/GaN multi-quantum well (MQW) solar cells with a comparatively high open-circuit voltage and good concentration properties.Thc open circuit voltage (Voc) keeps increasing logarithmically with concentration ratio until 60suns.The peak Voc of InGaN/GaN MQW solar cells,which has a predominant peak wavelength of 456nm from electroluminescence measurements,is found to be 2.45 V when the concentration ratio reaches 333×.Furthermore,the dcpendence of conversion efficiency and fill factor on concentration ratio are analyzed.展开更多
Ni-rich layered oxide cathode materials,such as LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(NCM811),exhibit high specific capacity and low cost,and become cathode material preference of high-energy-density Li-ion batteries.How...Ni-rich layered oxide cathode materials,such as LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(NCM811),exhibit high specific capacity and low cost,and become cathode material preference of high-energy-density Li-ion batteries.However,these cathode materials are not stable and will form Li-poor reconstructed layers and alkaline compounds(Li_(2)CO_(3),LiOH)on the surface during the storage and processing in humid air,resulting in serious deterioration of electrochemical properties.During the past two decades,the consensus on the surface instability mechanism during humid air storage has not been reached.The main controversy focuses on the unstable octahedron mechanism and the Li/H exchange mechanism.Herein,we investigate the instability mechanism in the humid air by conducting scanning electronic microscopy,scanning transmission electron microscopy,and x-ray photoelectron spectroscopy analysis on NCM811 samples stored in designed atmospheres,etc.,and realize that the surface instability of the NCM811 during storage should be mainly originated from Li/H exchange when it contacts with moisture.展开更多
Two-dimensional honeycomb crystals have inspired intense research interest for their novel properties and great potential in electronics and optoelectronics. Here, through molecular beam epitaxy on SrTiO_3(001), we re...Two-dimensional honeycomb crystals have inspired intense research interest for their novel properties and great potential in electronics and optoelectronics. Here, through molecular beam epitaxy on SrTiO_3(001), we report successful epitaxial growth of metal-rich chalcogenide Fe_(2)Te, a honeycomb-structured film that has no direct bulk analogue, under Te-limited growth conditions. The structural morphology and electronic properties of Fe_(2)Te are explored with scanning tunneling microscopy and angle resolved photoemission spectroscopy, which reveal electronic bands cross the Fermi level and nearly flat bands. Moreover, we find a weak interfacial interaction between Fe_(2)Te and the underlying substrates, paving a newly developed alternative avenue for honeycomb-based electronic devices.展开更多
There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power ...There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power electronic applications. Specially, benefiting from its ultra-high bandgap of around 4.8 eV, it is expected that the emerging Ga_(2)O_(3) technology would offer an exciting platform to deliver massively enhanced device performance for power electronics and even completely new applications.展开更多
基金supported by the National Natural Science Foundation of China(62104185)the National Science Fund for Distinguished Young Scholars(61925404)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Innovation Fund of Xidian Universitythe Wuhu and Xidian University Special Fund for Industry-University-Research Cooperation(XWYCXY-012021010)。
文摘Pre-ohmic-annealing(POA)treatment of P-GaN/AlN/AlGaN epitaxy under N_(2)atmosphere was demonstrated to effectively achieve good p-type ohmic contact as well as decreased epitaxy sheet resistance.Ohmic contact resistance(Rc)extracted by transfer length method reduced from 38 to 23Ω·mm with alleviated contact barrier height from 0.55 to 0.51 eV after POA treatment.X-ray photoelectron spectroscopy and Hall measurement confirmed that POA treatment was able to reduce surface state density and improve the hole concentration of p-GaN.Due to the decreased Rc and improved two-dimensional hole gas(2DHG)density,an outstanding-performance GaN E-mode p-channel MOSFET was successfully realized.
基金financially supported by the National Natural Science Foundation of China(21972049,22272175)the National Key R&D Program of China(2022YFA1504002)+3 种基金the“Scientist Studio Funding”from Tianmu Lake Institute of Advanced Energy Storage Technologies Co.,Ltd.Dalian Supports High-Level Talent Innovation and Entrepreneurship Projects(2021RD14)the Dalian Institute of Chemical Physics(DICP I202213)the 21C Innovation Laboratory,Contemporary Ampere Technology Ltd.by project No.21C-OP-202208。
文摘Developing wide-temperature and high-safety lithium-ion batteries(LIBs)presents significant challenges attributed to the absence of suitable solvents possessing broad liquid range and non-flammability properties.γ-Butyrolactone(GBL)has emerged as a promising solvent;however,its incompatibility with graphite anode has hindered its application.This limitation necessitates a comprehensive investigation into the underlying mechanisms and potential solutions.In this study,we achieve a molecular-level understanding of the perplexing interphase formation process by employing in-situ spectroelectrochemical techniques and density function calculations.Our findings reveal that,even at high salt concentrations,GBL consistently occupies the primary Li^(+)solvation sheath,leading to extensive GBL decomposition and the formation of a high-impedance and inorganic-poor solid-electrolyte interphase(SEI)layer.Contrary to manipulating solvation structures,our research demonstrates that the utilization of filmforming additives with higher reduction potential facilitates the pre-establishment of a robust SEI film on the graphite anode.This approach effectively inhibits GBL decomposition and significantly enhances the battery's lifespan.This study provides the first reported intrinsic understanding of the unique GBLgraphite incompatibility and offers valuable insights for the development of wide-temperature and high-safety LIBs.
基金supported by the National Natural Science Foundation of China(Grants Nos.52072323 and 52122211)the"Double-First Class"Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen Universitythe State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS22005)。
文摘As promising anode candidates for potassium-ion batteries(PIBs),antimony sulfide(Sb_(2)S_(3))possesses high specific capacity but suffers from massive volume expansion and sluggish kinetics due to the large K^(+)insertion,resulting in inferior cycling and rate performance.To address these challenges,a yolk-shell structured Sb_(2)S_(3)confined in N,S co-doped hollow carbon nanorod(YS-Sb_(2)S_(3)@NSC)working as a viable anode for PIBs is proposed.As directly verified by in situ transmission electron microscopy(TEM),the buffer space between the Sb_(2)S_(3)core and thin carbon shell can effectively accommodate the large expansion stress of Sb_(2)S_(3)without cracking the shell and the carbon shell can accelerate electron transport and K^(+)diffusion,which plays a significant role in reinforcing the structural stability and facilitating charge transfer.As a result,the YS-Sb_(2)S_(3)@NSC electrode delivers a high reversible K^(+)storage capacity of 594.58 m A h g^(-1)at 0.1 A g^(-1)and a long cycle life with a slight capacity degradation(0.01%per cycle)for 2000 cycles at 1 A g^(-1)while maintaining outstanding rate capability.Importantly,utilizing in in situ/ex situ microscopic and spectroscopic characterizations,the origins of performance enhancement and K^(+)storage mechanism of Sb_(2)S_(3)were clearly elucidated.This work provides valuable insights into the rational design of high-performance and durable transition metal sulfides-based anodes for PIBs.
基金the National Natural Science Foundation of China(Grant nos.21625304 and 21733012)the Ministry of Science and Technology(Grant No.2016YFA0200703).
文摘Lithium metal is regarded as the ultimate negative electrode material for secondary batteries due to its high energy density.However,it suffers from poor cycling stability because of its high reactivity with liquid electrolytes.Therefore,continuous efforts have been put into improving the cycling Coulombic efficiency(CE)to extend the lifespan of the lithium metal negative electrode.Herein,we report that using dual-salt additives of LiPF_(6) and LiNO_(3) in an ether solvent-based electrolyte can significantly improve the cycling stability and rate capability of a Li-carbon(Li-CNT)composite.As a result,an average cycling CE as high as 99.30% was obtained for the Li-CNT at a current density of 2.5 mA cm^(-2) and an negative electrode to positive electrode capacity(N/P)ratio of 2.The cycling stability and rate capability enhancement of the Li-CNT negative electrode could be attributed to the formation of a better solid electrolyte interphase layer that contains both inorganic components and organic polyether.The former component mainly originates from the decomposition of the LiNO_(3) additive,while the latter comes from the LiPF_(6)-induced ring-opening polymerization of the ether solvent.This novel surface chemistry significantly improves the CE of Li negative electrode,revealing its importance for the practical application of lithium metal batteries.
基金supported jointly by the National Natural Science Foundation of China(Nos.61674165,61604167,61574160,61704183,61404159,11604366)the Natural Science Foundation of Jiangsu Province(Nos.BK20170432,BK20160397,BK20140394)+2 种基金the National Key R&D Program of China(No.2016YFB0401803)the Strategic Priority Re-search Program of the Chinese Academy of Science(No.XDA09020401)the support at the Platform for Characterization&Test,Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences
文摘High quality gallium oxide(Ga_2O_3) thin films are deposited by remote plasma-enhanced atomic layer deposition(RPEALD) with trimethylgallium(TMG) and oxygen plasma as precursors. By introducing in-situ NH3 plasma pretreatment on the substrates, the deposition rate of Ga_2O_3 films on Si and GaN are remarkably enhanced, reached to 0.53 and 0.46 ?/cycle at 250 °C,respectively. The increasing of deposition rate is attributed to more hydroxyls(–OH) generated on the substrate surfaces after NH3 pretreatment, which has no effect on the stoichiometry and surface morphology of the oxide films, but only modifies the surface states of substrates by enhancing reactive site density. Ga_2O_3 film deposited on GaN wafer is crystallized at 250 °C, with an epitaxial interface between Ga_2O_3 and GaN clearly observed. This is potentially very important for reducing the interface state density through high quality passivation.
基金supported by the National Natural Science Foundation of China(Grant No.61922082,61875223,61927813)the Natural Science Foundation of Jiangsu Province(Grant No.BK20191195)The support from the Vacuum Interconnected Nanotech Workstation(Nano-X)of Suzhou Institute of Nano-tech and Nano-bionics(SINANO),Chinese Academy of Sciences。
文摘Black phosphorous(BP),an excellent two-dimensional(2D)monoelemental layered p-type semiconductor material with high carrier mobility and thickness-dependent tunable direct bandgap structure,has been widely applied in various devices.As the essential building blocks for modern electronic and optoelectronic devices,high quality PN junctions based on semiconductors have attracted widespread attention.Herein,we report a junction field-effect transistor(JFET)by integrating narrow-gap p-type BP and ultra-wide gap n-typeβ-Ga2O3 nanoflakes for the first time.BP andβ-Ga2O3 form a vertical van der Waals(vdW)heterostructure by mechanically exfoliated method.The BP/β-Ga2O3 vdW heterostructure exhibits remarkable PN diode rectifying characteristics with a high rectifying ratio about 107 and a low reverse current around pA.More interestingly,by using the BP as the gate andβ-Ga2O3 as the channel,the BP/β-Ga2O3 JFET devices demonstrate excellent n-channel JFET characteristics with the on/off ratio as high as 107,gate leakage current around as low as pA,maximum transconductance(gm)up to 25.3μS and saturation drain current(IDSS)of 16.5μA/μm.Moreover,it has a pinch-off voltage of–20 V and a minimum subthreshold swing of 260 mV/dec.These excellent n-channel JFET characteristics will expand the application of BP in future nanoelectronic devices.
基金financially supported by the National Natural Science Foundation of China[grant numbers:21503265,51603135,21473241]Ministry of Science and Technology[grant number:2016YFB0100102]Nantong Science and Technology Bureau[grant number:JC2018038]。
文摘Succinonitrile(SN)-based polymer plastic crystal electrolytes(PPCEs)have attracted considerable attention as solid-state electrolytes owing to their high ionic conductivities similar to those of liquid electrolytes,excellent contacts with the electrodes,and good mechanic properties.As a crucial property of a solid-state electrolyte,the ionic conductivity of the PPCE directly depends on the interactions between the constituent parts including the polymer,lithium salt,and SN.A few studies have focused on the effects of polymer–lithium–salt and polymer–SN interactions on the PPCE ionic conductivity.Nevertheless,the impact of the lithium–salt–SN combination on the PPCE ionic conductivity has not been analyzed.In particular,tuning of the lithium-salt–SN interaction to fabricate a subzero PPCE with a high low-temperature ionic conductivity has not been reported.In this study,we design and fabricate five PPCE membranes with different weight ratios of Li N(SO2 CF3)2(Li TFSI)and SN to investigate the effect of the Li TFSI–SN interaction on the PPCE ionic conductivity.The ionic conductivities of the five PPCEs are investigated in the temperature range of–20 to 60°C by electro-chemical impedance spectroscopy.The interaction is analyzed by Fourier-transform infrared spectroscopy,Raman spectroscopy,and differential scanning calorimetry.The Li TFSI–SN interaction significantly influences the melting point of the PPCE,dissociation of the Li TFSI salt,and thus the PPCE ionic conductivity.By tuning the Li TFSI–SN interaction,a subzero workable PPCE membrane having an excellent low-temperature ionic conductivity(6×10-4 S cm–1 at 0°C)is obtained.The electro-chemical performance of the optimal PPCE is evaluated by using a Li Co O2/PPCE/Li4 Ti5 O12 cell,which confirms the application feasibility of the proposed quasisolid-state electrolyte in subzero workable lithium-ion batteries.
基金the funding support from the fellowship of the China Postdoctoral Science Foundation (2022M722329, 2021M700097)the National Natural Science Foundation for Distinguished Young Scholars of China (62125112)+2 种基金the National Natural Science Foundation of China (62071462, 62071463, 62271479, 22109173)the Jiangxi Provincial Natural Science Foundation (20224ACB212001)the support from Nano-X Vacuum Interconnected Workstation&Key Laboratory of Multifunctional Nanomaterials and Smart Systems of Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO),Chinese Academy of Sciences (CAS)
文摘Hydrogels offer tissue-like softness,stretchability,fracture toughness,ionic conductivity,and compatibility with biological tissues,which make them promising candidates for fabricating flexible bioelectronics.A soft hydrogel film offers an ideal interface to directly bridge thin-film electronics with the soft tissues.However,it remains difficult to fabricate a soft hydrogel film with an ultrathin configuration and excellent mechanical strength.Here we report a biological tissue-inspired ultrasoft microfiber composite ultrathin(<5μm)hydrogel film,which is currently the thinnest hydrogel film as far as we know.The embedded microfibers endow the composite hydrogel with prominent mechanical strength(tensile stress~6 MPa)and anti-tearing property.Moreover,our microfiber composite hydrogel offers the capability of tunable mechanical properties in a broad range,allowing for matching the modulus of most biological tissues and organs.The incorporation of glycerol and salt ions imparts the microfiber composite hydrogel with high ionic conductivity and prominent anti-dehydration behavior.Such microfiber composite hydrogels are promising for constructing attaching-type flexible bioelectronics to monitor biosignals.
基金the National Key Research and Development Program of China(Grant No.2018YFB0406602)Natural Science Foundation of Jiangsu Province,China(Grant No.BK20180252)+6 种基金Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-JSC034)the National Natural Science Foundation of China(Grant Nos.61804163,61875224,and 61827823)the Key Research and Development Program of Jiangsu Province,China(Grant No.BE2018005)Natural Science Foundation of Jiangxi Province,China(Grant No.20192BBEL50033)Research Program of Scientific Instrument,Equipment of CAS(Grant No.YJKYYQ20200073)SINANO(Grant Nos.Y8AAQ21001 and Y4JAQ21001)Vacuum Interconnected Nanotech Workstation(Grant Nos.Nano-X and B2006)。
文摘Due to the wide application of UV-A(320 nm–400 nm)and UV-C(200 nm–280 nm)photodetectors,dual-wavelength(UV-A/UV-C)photodetectors are promising for future markets.A dual-wavelength UV photodetector based on vertical(Al,Ga)N nanowires and graphene has been demonstrated successfully,in which graphene is used as a transparent electrode.Both UV-A and UV-C responses can be clearly detected by the device,and the rejection ratio(R254 nm/R450 nm)exceeds35 times at an applied bias of-2 V.The short response time of the device is less than 20 ms.Furthermore,the underlying mechanism of double ultraviolet responses has also been analyzed systematically.The dual-wavelength detections could mainly result from the appropriate ratio of the thicknesses and the enough energy band difference of(Al,Ga)N and Ga N sections.
基金supported by the National Natural Science Foundation of China(No.21972049)。
文摘B-containing electrolyte additives are widely used to enhance the cycle performance at low temperature and the rate capability of lithium-ion batteries by constructing an efficient cathode electrolyte interphase(CEI)to facilitate the rapid Li+migration.Nevertheless,its wide-temperature application has been limited by the instability of B-derived CEI layer at high temperature.Herein,dual electrolyte additives,consisting of lithium tetraborate(Li_(2)TB)and 2,4-difluorobiphenyl(FBP),are proposed to boost the widetemperature performances of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)cathode.Theoretical calculation and electrochemical performances analyses indicate that Li_(2)TB and FBP undergo successive decomposition to form a unique dual-layer CEI.FBP acts as a synergistic filming additive to Li_(2)TB,enhancing the hightemperature performance of NCM cathode while preserving the excellent low-temperature cycle stability and the superior rate capability conferred by Li_(2)TB additive.Therefore,the capacity retention of NCM‖Li cells using optimal FBP-Li_(2)TB dual electrolyte additives increases to 100%after 200 cycles at-10℃,99%after 200 cycles at 25℃,and 83%after 100 cycles at 55℃,respectively,much superior to that of base electrolyte(63%/69%/45%).More surprisingly,galvanostatic c ha rge/discharge experiments at different temperatures reveal that NCM‖Li cells using FBP-Li_(2)TB additives can operate at temperatures ranging from-40℃to 60℃.This synergistic interphase modification utilizing dual electrolyte additives to construct a unique dual-layer CEI adaptive to a wide temperature range,provides valuable insights to the practical applications of NCM cathodes for all-climate batteries.
基金supported by the National Key R&D Program of China (Grant Nos. 2017YFB0404100 and 2017YFB0403000)the National Natural Science Foundation of China (Grant No. 61704187)the Key Research Program of the Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSWSLH042)。
文摘Separation technology is an indispensable step in the preparation of freestanding GaN substrate. In this paper, a largearea freestanding GaN layer was separated from the substrate by an electrochemical liftoff process on a sandwich structure composed of an Fe-doped GaN substrate, a highly conductive Si-doped sacrificial layer and a top Fe-doped layer grown by hydride vapor phase epitaxy(HVPE). The large difference between the resistivity in the Si-doped layer and Fe-doped layer resulted in a sharp interface between the etched and unetched layer. It was found that the etching rate increased linearly with the applied voltage, while it continuously decreased with the electrochemical etching process as a result of the mass transport limitation. Flaky GaN pieces and nitrogen gas generated from the sacrificial layer by electrochemical etching were recognized as the main factors responsible for the blocking of the etching channel. Hence, a thick Si-doped layer grown by HVPE was used as the sacrificial layer to alleviate this problem. Moreover, high temperature and ultrasonic oscillation were also found to increase the etching rate. Based on the results above, we succeeded in the liftoff of ~ 1.5 inch GaN layer. This work could help reduce the cost of freestanding GaN substrate and identifies a new way for mass production.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0207300)Key Program of the National Natural Science Foundation of China(Grant No.U1964205)Talent of Mass Entrepreneurship and Innovation in Jiangsu Province(2020)。
文摘Enabling lithium-ion batteries(LIBs)to operate in a wider temperature range,e.g.,as low or high as possible or capable of both,is an urgent need and shared goal.Here we report,for the first time,a low-temperature electrolyte consisting of traditional ethylene carbonate,methyl acetate,butyronitrile solvents,and 1 M LiPF_(6) salt,attributed to its very low freezing point(T_(f)=-126.3℃)and high ion conductivity at extremely low temperatures(0.21 m S/cm at-100℃),successfully extends the service temperature of a practical 9.6 Ah LIB down to-100℃(49.6%capacity retention compared to that at room temperature),which is the lowest temperature reported for practical cells so far as we know,and is lower than the lowest natural temperature(-89.2℃)recorded on earth.Meanwhile,the high-temperature performance of lithium-ion batteries is not affected.The capacity retention is 88.2%and 83.4%after 800 cycles at 25℃and 45℃,respectively.The progress also makes LIB a proper power supplier for space vehicles in astronautic explorations.
基金financially supported by National Natural Science Foundation of China (22008166)Natural Science Foundation of Shanxi (201901D211047)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0185)。
文摘Dimethyl oxalate(DMO) hydrogenation is a crucial step in the coal to ethylene glycol(CTEG) process.Herein, Cu catalyst supported on fibrous mesoporous silica(Cu/FMS) was synthesized via liquid phase deposition technique and applied for the DMO hydrogenation to EG. The catalyst exhibited a remarkable EG selectivity of 96.95% and maintained its activity without deactivation for 1000 h. Fibers of FMS support and liquid phase deposition technology cooperated to give high dispersion of Cu species in the Cu/FMS catalyst, resulting in a high Cu surface area. The formation of Si—O—Cu during catalyst preparation process increased the Cu^(+)/(Cu^(0)+ Cu^(+)) ratio and enhanced the thermal and valence stability of Cu species.The high Cu^(+) surface area and Cu stability(thermal and valence stability) of the Cu/FMS catalyst were key factors for achieving superior EG selectivity and ultra-high stability.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 92165205, 11790311, 12004172, 11774152, 11604366, and 11634007)the National Key Research and Development Program of China (Grant Nos. 2018YFA0306800 and 2016YFA0300401)+1 种基金the Program of High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu Province, the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 2020Z172)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK 20160397)。
文摘As a special order of electronic correlation induced by spatial modulation, the charge density wave(CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning-tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the(■) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe_(2) film. Combining the variable-temperature angle-resolved photoemission spectroscopic(ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts △_(1) and△_(2). The gap part ?1 that closes around ~ 150 K is accompanied with the vanish of the(√7×√3) CDW phase. While another momentum-dependent gap part △_(2) can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure △_(1) +△_(2), which suggests different forming mechanisms between the(√7×√3) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe_(2) film as a two-dimensional(2D) material.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275272)the Training Program for Excellent Young Innovators of Changsha,China(Grant No.KQ2206003).
文摘We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb_(2)GeTe_(4)saturable absorber(SA).The Nb_(2)GeTe_(4)SA triggers passive Q-switching of the laser,and an un-pumped Yb-doped fiber together with a 0.08-nmbandwidth polarization-maintaining fiber Bragg grating(FBG)acts as an ultra-narrow bandwidth filter to realize singlelongitudinal-mode(SLM)oscillation.The devices used in the laser are all kept polarized,so as to ensure linearly polarized laser output.Stable SLM linearly polarized Q-switching operation at 1064.6 nm is successfully achieved,producing a laser with a shortest pulse width of 1.36μs,a linewidth of 28.4 MHz,a repetition rate of 28.3 kHz-95.9 kHz,and a polarization extinction ratio of about 30 dB.It is believed that the single-frequency linearly polarized pulsed fiber laser studied in this paper has great application value in gravitational wave detection,beam combining,nonlinear frequency conversion,and other fields.
基金This work was supported by the National Key Research and Development Program of China(Nos.2022YFB3605604,and 2018YFE0125700)the National Natural Science Foundation of China(Nos.62225402,61927806,62234001,and U22A2074).The authors are grateful for the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(SINANO),Chinese Academy of Sciences.
文摘Spin injection and detection in bulk GaN were investigated by performing magnetotransport measurements at low temperatures.A non-local four-terminal lateral spin valve device was fabricated with Co/GaN Schottky contacts.The spin injection efficiency of 21%was achieved at 1.7 K.It was confirmed that the thin Schottky barrier formed between the heavily ndoped GaN and Co was conducive to the direct spin tunneling,by reducing the spin scattering relaxation through the interface states.
基金Supported by the Joint Projects under Grant Nos Y1AAQ11001 and Y1EAQ31001the Suzhou Solar Cell Research Project under Grant No ZXJ0903the Ministry of Science and Technology of China under Grant No 2010DFA22770.
文摘We report InGaN/GaN multi-quantum well (MQW) solar cells with a comparatively high open-circuit voltage and good concentration properties.Thc open circuit voltage (Voc) keeps increasing logarithmically with concentration ratio until 60suns.The peak Voc of InGaN/GaN MQW solar cells,which has a predominant peak wavelength of 456nm from electroluminescence measurements,is found to be 2.45 V when the concentration ratio reaches 333×.Furthermore,the dcpendence of conversion efficiency and fill factor on concentration ratio are analyzed.
文摘Ni-rich layered oxide cathode materials,such as LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(NCM811),exhibit high specific capacity and low cost,and become cathode material preference of high-energy-density Li-ion batteries.However,these cathode materials are not stable and will form Li-poor reconstructed layers and alkaline compounds(Li_(2)CO_(3),LiOH)on the surface during the storage and processing in humid air,resulting in serious deterioration of electrochemical properties.During the past two decades,the consensus on the surface instability mechanism during humid air storage has not been reached.The main controversy focuses on the unstable octahedron mechanism and the Li/H exchange mechanism.Herein,we investigate the instability mechanism in the humid air by conducting scanning electronic microscopy,scanning transmission electron microscopy,and x-ray photoelectron spectroscopy analysis on NCM811 samples stored in designed atmospheres,etc.,and realize that the surface instability of the NCM811 during storage should be mainly originated from Li/H exchange when it contacts with moisture.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 51788104, 11604366, 11774192, and 11634007)the National Key R&D Program of China (Grant Nos. 2017YFA0304600 and 2018YFA0305603)。
文摘Two-dimensional honeycomb crystals have inspired intense research interest for their novel properties and great potential in electronics and optoelectronics. Here, through molecular beam epitaxy on SrTiO_3(001), we report successful epitaxial growth of metal-rich chalcogenide Fe_(2)Te, a honeycomb-structured film that has no direct bulk analogue, under Te-limited growth conditions. The structural morphology and electronic properties of Fe_(2)Te are explored with scanning tunneling microscopy and angle resolved photoemission spectroscopy, which reveal electronic bands cross the Fermi level and nearly flat bands. Moreover, we find a weak interfacial interaction between Fe_(2)Te and the underlying substrates, paving a newly developed alternative avenue for honeycomb-based electronic devices.
文摘There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power electronic applications. Specially, benefiting from its ultra-high bandgap of around 4.8 eV, it is expected that the emerging Ga_(2)O_(3) technology would offer an exciting platform to deliver massively enhanced device performance for power electronics and even completely new applications.