Ⅲ-nitride semiconductor materials have excellent optoelectronic properties,mechanical properties,and chemical stability,which have important applications in the field of optoelectronics and microelectronics.Two-dimen...Ⅲ-nitride semiconductor materials have excellent optoelectronic properties,mechanical properties,and chemical stability,which have important applications in the field of optoelectronics and microelectronics.Two-dimensional(2D)materials have been widely focused in recent years due to their peculiar properties.With the property of weak bonding between layers of 2D materials,the growth ofⅢ-nitrides on 2D materials has been proposed to solve the mismatch problem caused by heterogeneous epitaxy and to develop substrate stripping techniques to obtain high-quality,low-cost nitride materials for high-quality nitride devices and their extension in the field of flexible devices.In this progress report,the main methods for the preparation of 2D materials,and the recent progress and applications of different techniques for the growth ofⅢ-nitrides based on 2D materials are reviewed.展开更多
基金Project supported by the State Key Program of the National Natural Science Foundation of China(Grant No.61734008)the National Natural Science Foundation of China(Grant No.62174173)。
文摘Ⅲ-nitride semiconductor materials have excellent optoelectronic properties,mechanical properties,and chemical stability,which have important applications in the field of optoelectronics and microelectronics.Two-dimensional(2D)materials have been widely focused in recent years due to their peculiar properties.With the property of weak bonding between layers of 2D materials,the growth ofⅢ-nitrides on 2D materials has been proposed to solve the mismatch problem caused by heterogeneous epitaxy and to develop substrate stripping techniques to obtain high-quality,low-cost nitride materials for high-quality nitride devices and their extension in the field of flexible devices.In this progress report,the main methods for the preparation of 2D materials,and the recent progress and applications of different techniques for the growth ofⅢ-nitrides based on 2D materials are reviewed.