The main driver for recycling cable wastes is the high value of the conducting metal, while the plastic with its lower value is often neglected. New improved cable plastic recycling routes can provide both economic an...The main driver for recycling cable wastes is the high value of the conducting metal, while the plastic with its lower value is often neglected. New improved cable plastic recycling routes can provide both economic and environmental incentive to cable producers for moving up the “cable plastic waste ladder”. Cradle-to-gate life cycle assessment, LCA, of the waste management of the cable scrap is suggested and explained as a method to analyze the pros and cons of different cable scrap recycling options at hand. Economic and environmental data about different recycling processes and other relevant processes and materials are given. Cable producers can use this data and method to assess the way they deal with the cable plastic waste today and compare it with available alternatives and thus illuminate the improvement potential of recycling cable plastic waste both in an environmental and in an economic sense. The methodology applied consists of: cradle-to-gate LCA for waste material to a recycled material (recyclate);quantifying the climate impact for each step on the waste ladder for the specific waste material;the use of economic and climate impact data in parallel;climate impact presented as a span to portray the insecurities related to which material the waste will replace;and possibilities for do-it-yourself calculations. Potentially, the methodology can be useful also for other waste materials in the future.展开更多
This study is aiming at controlling the microstructure of plasma sprayed Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> composite coatings using freeze granulated powders. As sprayed a...This study is aiming at controlling the microstructure of plasma sprayed Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> composite coatings using freeze granulated powders. As sprayed and sintered Al<sub>2</sub>O<sub>3</sub> + 3wt%TiO<sub>2</sub> powders were air plasma sprayed with industry process parameters and compared with a commercial powder. The resulting coatings were investigated with respect to powder flowability, porosity and microstructure of the granules. The results showed that microstructure and melting fraction in the coatings could be tailored with the freeze granulation process and heat treatment conditions.展开更多
文摘The main driver for recycling cable wastes is the high value of the conducting metal, while the plastic with its lower value is often neglected. New improved cable plastic recycling routes can provide both economic and environmental incentive to cable producers for moving up the “cable plastic waste ladder”. Cradle-to-gate life cycle assessment, LCA, of the waste management of the cable scrap is suggested and explained as a method to analyze the pros and cons of different cable scrap recycling options at hand. Economic and environmental data about different recycling processes and other relevant processes and materials are given. Cable producers can use this data and method to assess the way they deal with the cable plastic waste today and compare it with available alternatives and thus illuminate the improvement potential of recycling cable plastic waste both in an environmental and in an economic sense. The methodology applied consists of: cradle-to-gate LCA for waste material to a recycled material (recyclate);quantifying the climate impact for each step on the waste ladder for the specific waste material;the use of economic and climate impact data in parallel;climate impact presented as a span to portray the insecurities related to which material the waste will replace;and possibilities for do-it-yourself calculations. Potentially, the methodology can be useful also for other waste materials in the future.
文摘This study is aiming at controlling the microstructure of plasma sprayed Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> composite coatings using freeze granulated powders. As sprayed and sintered Al<sub>2</sub>O<sub>3</sub> + 3wt%TiO<sub>2</sub> powders were air plasma sprayed with industry process parameters and compared with a commercial powder. The resulting coatings were investigated with respect to powder flowability, porosity and microstructure of the granules. The results showed that microstructure and melting fraction in the coatings could be tailored with the freeze granulation process and heat treatment conditions.