Quantum dots comprise a type of quantum impurity system. The entanglement and co- herence of quantum states are significantly influenced by the strong electron-electron interactions among impurities and their dissipat...Quantum dots comprise a type of quantum impurity system. The entanglement and co- herence of quantum states are significantly influenced by the strong electron-electron interactions among impurities and their dissipative coupling with the surrounding environment. Competition between many-body effects and transfer couplings plays an important role in determining the entanglement among localized impurity spins. In this work, we employ the hierarchical-equations-of-rnotion approach to explore the entanglement of a strongly correlated double quantum dots system. The relation between the total system entropy and those of subsystems is also investigated.展开更多
基金supported by the Ministry of Science and Technology of China(No.2016YFA0400900 and No.2016YFA0200600)the National Natural Science Foundation of China(No.21573202 and No.21633006)the Fundamental Research Funds for the Central Universities(No.2340000074)
文摘Quantum dots comprise a type of quantum impurity system. The entanglement and co- herence of quantum states are significantly influenced by the strong electron-electron interactions among impurities and their dissipative coupling with the surrounding environment. Competition between many-body effects and transfer couplings plays an important role in determining the entanglement among localized impurity spins. In this work, we employ the hierarchical-equations-of-rnotion approach to explore the entanglement of a strongly correlated double quantum dots system. The relation between the total system entropy and those of subsystems is also investigated.