The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds(including β-carotene and vitamins) with potential commercial value.A large transcriptome database of D.salina durin...The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds(including β-carotene and vitamins) with potential commercial value.A large transcriptome database of D.salina during the adjustment, exponential and stationary growth phases was generated using a high throughput sequencing platform.We characterized the metabolic processes in D.salina with a focus on valuable metabolites, with the aim of manipulating D.salina to achieve greater economic value in large-scale production through a bioengineering strategy.Gene expression profiles under salt stress verified using quantitative polymerase chain reaction(qPCR) implied that salt can regulate the expression of key genes.This study generated a substantial fraction of D.salina transcriptional sequences for the entire growth cycle, providing a basis for the discovery of novel genes.This first full-scale transcriptome study of D.salina establishes a foundation for further comparative genomic studies.展开更多
基金Project supported by the National High-Tech R&D Program(863)of China(No.2007AA09Z449)
文摘The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds(including β-carotene and vitamins) with potential commercial value.A large transcriptome database of D.salina during the adjustment, exponential and stationary growth phases was generated using a high throughput sequencing platform.We characterized the metabolic processes in D.salina with a focus on valuable metabolites, with the aim of manipulating D.salina to achieve greater economic value in large-scale production through a bioengineering strategy.Gene expression profiles under salt stress verified using quantitative polymerase chain reaction(qPCR) implied that salt can regulate the expression of key genes.This study generated a substantial fraction of D.salina transcriptional sequences for the entire growth cycle, providing a basis for the discovery of novel genes.This first full-scale transcriptome study of D.salina establishes a foundation for further comparative genomic studies.