In this paper, the iterative Vertical-Bell-lab Layered Space-Time (V-BLAST) decoding algorithm of an Adaptive Modulation and Coding (AMC) system is proposed, and the corresponding MIMO scheme is analyzed. The proposed...In this paper, the iterative Vertical-Bell-lab Layered Space-Time (V-BLAST) decoding algorithm of an Adaptive Modulation and Coding (AMC) system is proposed, and the corresponding MIMO scheme is analyzed. The proposed decoding algorithm adopts iteratively extrinsic information from a Maximum A Posteriori (MAP) decoder as an a priori probability in the two decoding procedures of the V-BLAST scheme of ordering and slicing in an AMC system. Furthermore, the performance of the proposed decoding algorithm is compared with that of a conventional V-BLAST decoding algorithm and a Maximum Likelihood (ML) decoding algorithm in the combined system of an AMC scheme and a V-BLAST scheme. In this analysis, each MIMO schemes are assumed to be parts of the system for performance improvement.展开更多
文摘In this paper, the iterative Vertical-Bell-lab Layered Space-Time (V-BLAST) decoding algorithm of an Adaptive Modulation and Coding (AMC) system is proposed, and the corresponding MIMO scheme is analyzed. The proposed decoding algorithm adopts iteratively extrinsic information from a Maximum A Posteriori (MAP) decoder as an a priori probability in the two decoding procedures of the V-BLAST scheme of ordering and slicing in an AMC system. Furthermore, the performance of the proposed decoding algorithm is compared with that of a conventional V-BLAST decoding algorithm and a Maximum Likelihood (ML) decoding algorithm in the combined system of an AMC scheme and a V-BLAST scheme. In this analysis, each MIMO schemes are assumed to be parts of the system for performance improvement.