We present a detailed analysis on mode evolution of gratingcoupled surface plasmonic polaritons (SPPs) on a conical metal tip based on the guidedwave theory. The eigenvalue equations for SPPs modes are discussed, re...We present a detailed analysis on mode evolution of gratingcoupled surface plasmonic polaritons (SPPs) on a conical metal tip based on the guidedwave theory. The eigenvalue equations for SPPs modes are discussed, revealing that cylindrical metal waveguides only support TM01 and HEm1 surface modes. During propagation on the metal tip, the gratingcoupled SPPs are converted to HE31, HE21, HE11 and TM01 successively, and these modes are sequentially cut off except TM01. The TM01 mode further propagates with drastically increasing effective mode index and is converted to localized surface plasmons (LSPs) at the tip apex, which is responsible for plasmonic nanofocusing. The gapmode plasmons can be excited with the focusing TM01 mode by approaching a metal substrate to the tip apex, resulting in further enhanced electric field and reduced size of the plasmonic focus.展开更多
Although abundant research on the anisotropy of van der Waals(vd W)materials has been published,we undertake an in-depth study of their optical properties as they have an important guiding role for light control in tw...Although abundant research on the anisotropy of van der Waals(vd W)materials has been published,we undertake an in-depth study of their optical properties as they have an important guiding role for light control in two-dimensional(2D)nanospace.As an example,we study the reflectance of few-layered black phosphorus(BP)in the total internal reflection(TIR)mode in detail.We demonstrate that its optical anisotropy can be changed on a large scale by varying the incident angles,polarization states,and the in-plane rotation angles of the BP samples.Theoretical analysis indicates that the phenomena observed are common to all the atom-thick biaxial crystals,so these conclusions can be widely applied to other anisotropic 2D materials.This research furthers the current understanding of the properties of BP more comprehensively,and provides guidance for developing new optoelectronic applications,especially when BP and other atom-thick biaxial crystals are integrated with TIR devices.展开更多
When a laser beam writes on a metallic film,it usually coarsens and deuniformizes grains because of Ostwald ripening,similar to the case of annealing.Here we show an anomalous refinement effect of metal grains:A metal...When a laser beam writes on a metallic film,it usually coarsens and deuniformizes grains because of Ostwald ripening,similar to the case of annealing.Here we show an anomalous refinement effect of metal grains:A metallic silver film with large grains melts and breaks into uniform,close-packed,and ultrafine(~10 nm)grains by laser direct writing with a nanoscale laser spot size and nanosecond pulse that causes localized heating and adaptive shock-cooling.This method exhibits high controllability in both grain size and uniformity,which lies in a linear relationship between the film thickness(h)and grain size(D),D∝h.The linear relationship is significantly different from the classical spinodal dewetting theory obeying a nonlinear relationship(D∝h5/3)in common laser heating.We also demonstrate the application of such a silver film with a grain size of~10.9 nm as a surface-enhanced Raman scattering chip,exhibiting superhigh spatial-uniformity and low detection limit down to 10-15 M.This anomalous refinement effect is general and can be extended to many other metallic films.展开更多
We demonstrate both experimentally and theoretically the trapping and guiding of a weak signal pulse via a selfaccelerating Airy pulse. This is achieved by launching the Airy pulse in the anomalous dispersion regime o...We demonstrate both experimentally and theoretically the trapping and guiding of a weak signal pulse via a selfaccelerating Airy pulse. This is achieved by launching the Airy pulse in the anomalous dispersion regime of an optical fiber, thereby inducing a gravity-like potential that can compel the signal pulse in the normal dispersion regime to undergo co-acceleration. Such guiding pulse by pulse can be controlled at ease simply by altering the acceleration conditions of the Airy pulse. Furthermore, the guided signal can be featured with either single or double peaks, which is explained by using the theory of fundamental and second-order quasi-modes associated with the gravity-like potential. Our work represents, to our knowledge, the first demonstration of pulse guiding in the anomalous dispersion regime of any self-accelerating pulse.展开更多
The flourishing of topological photonics in the last decade was achieved mainly due to developments in linear topological photonic structures.However,when nonlinearity is introduced,many intriguing questions arise.For...The flourishing of topological photonics in the last decade was achieved mainly due to developments in linear topological photonic structures.However,when nonlinearity is introduced,many intriguing questions arise.For example,are there universal fingerprints of the underlying topology when modes are coupled by nonlinearity,and what can happen to topological invariants during nonlinear propagation?To explore these questions,we experimentally demonstrate nonlinearity-induced coupling of light into topologically protected edge states using a photonic platform and develop a general theoretical framework for interpreting the mode-coupling dynamics in nonlinear topological systems.Performed on laser-written photonic Su-Schrieffer-Heeger lattices,our experiments show the nonlinear coupling of light into a nontrivial edge or interface defect channel that is otherwise not permissible due to topological protection.Our theory explains all the observations well.Furthermore,we introduce the concepts of inherited and emergent nonlinear topological phenomena as well as a protocol capable of revealing the interplay of nonlinearity and topology.These concepts are applicable to other nonlinear topological systems,both in higher dimensions and beyond our photonic platform.展开更多
We present the generation of the nanosecond cylindrical vector beams(CVBs)in a two-mode fiber(TMF)and its applications of stimulated Raman scattering.The nanosecond(1064 nm,10 ns,10 Hz)CVBs have been directly produced...We present the generation of the nanosecond cylindrical vector beams(CVBs)in a two-mode fiber(TMF)and its applications of stimulated Raman scattering.The nanosecond(1064 nm,10 ns,10 Hz)CVBs have been directly produced with mode conversion efficiency of~18 d B(98.4%)via an acoustically induced fiber grating,and then the stimulated Raman scattering signal is generated based on the transmission of the nanosecond CVBs in a 100-m-long TMF.The transverse mode intensity and polarization distributions of the first-order Stokes shift component(1116.8 nm)are consistent with the nanosecond CVBs pump pulse.展开更多
Osmotic conditions play an important role in the cell properties of human red blood cells(RBCs),which are crucial for the pathological analysis of some blood diseases such as malaria.Over the past decades,numerous eff...Osmotic conditions play an important role in the cell properties of human red blood cells(RBCs),which are crucial for the pathological analysis of some blood diseases such as malaria.Over the past decades,numerous efforts have mainly focused on the study of the RBC biomechanical properties that arise from the unique deformability of erythrocytes.Here,we demonstrate nonlinear optical effects from human RBCs suspended in different osmotic solutions.Specifically,we observe self-trapping and scattering-resistant nonlinear propagation of a laser beam through RBC suspensions under all three osmotic conditions,where the strength of the optical nonlinearity increases with osmotic pressure on the cells.This tunable nonlinearity is attributed to optical forces,particularly the forward-scattering and gradient forces.Interestingly,in aged blood samples(with lysed cells),a notably different nonlinear behavior is observed due to the presence of free hemoglobin.We use a theoretical model with an optical force-mediated nonlocal nonlinearity to explain the experimental observations.Our work on light self-guiding through scattering biosoft-matter may introduce new photonic tools for noninvasive biomedical imaging and medical diagnosis.展开更多
Light-field shaping technology plays an important role in optics and nanophotonics. For instance, the spatially structured light field, which exhibits characteristic features in complex phases, light intensity, and po...Light-field shaping technology plays an important role in optics and nanophotonics. For instance, the spatially structured light field, which exhibits characteristic features in complex phases, light intensity, and polarization, is crucial to understanding new physical phenomena and exploring practical applications. Herein, we propose and demonstrate a new class of tunable circular Pearcey beams(TCPBs) by imposing the annular spiral-zone phase(ASZP). Through experiments, we used a spatial light modulator to generate TCPBs based on their spiral phase distribution, and numerically analyzed the generation and control of the beams with unusual autofocusing and self-rotating dynamics. ASZP is a general term for complex phases composed of the spiral phase,equiphase, and radial phase. TCPB typically exhibits dynamical properties, including abrupt autofocusing, automatic generation of optical bottles, and self-rotation of the beam pattern, during propagation. Besides, the number of generated optical bottles can be modulated by the superposition mode of ASZP and the number of subphases. We found that an inappropriate superposition mode leads to distortion, and we analyzed the underlying mechanism. Potential applications of TCPBs in optical manipulation are also discussed, presenting an exemplary role desired for light-field manipulation.展开更多
The orbital degrees of freedom play a pivotal role in understanding fundamental phenomena in solid-state materials as well as exotic quantum states of matter including orbital superfluidity and topological semimetals....The orbital degrees of freedom play a pivotal role in understanding fundamental phenomena in solid-state materials as well as exotic quantum states of matter including orbital superfluidity and topological semimetals.Despite tremendous efforts in engineering synthetic cold-atom,as well as electronic and photonic lattices to explore orbital physics,thus far high orbitals in an important class of materials,namely,higher-order topological insulators(HOTIs),have not been realized.Here,we demonstrate p-orbital corner states in a photonic HOTI,unveiling their underlying topological invariant,symmetry protection,and nonlinearity-induced dynamical rotation.In a Kagome-type HOTI,we find that the topological protection of p-orbital corner states demands an orbital-hopping symmetry in addition to generalized chiral symmetry.Due to orbital hybridization,nontrivial topology of the p-orbital HOTI is“hidden”if bulk polarization is used as the topological invariant,but well manifested by the generalized winding number.Our work opens a pathway for the exploration of intriguing orbital phenomena mediated by higher-band topology applicable to a broad spectrum of systems.展开更多
Compact terahertz(THz)devices,especially for nonlinear THz components,have received more and more attention due to their potential applications in THz nonlinearity-based sensing,communications,and computing devices.Ho...Compact terahertz(THz)devices,especially for nonlinear THz components,have received more and more attention due to their potential applications in THz nonlinearity-based sensing,communications,and computing devices.However,effective means to enhance,control,and confine the nonlinear harmonics of THz waves remain a great challenge for micro-scale THz nonlinear devices.In this work,we have established a technique for nonlinear harmonic generation of THz waves based on phonon polariton-enhanced giant THz nonlinearity in a 2D-topologically protected valley photonic microcavity.Effective THz harmonic generation has been observed in both noncentrosymmetric and centrosymmetric nonlinear materials.These results can provide a valuable reference for the generation and control of THz high-harmonics,thus developing new nonlinear devices in the THz regime.展开更多
The optical absorption properties of femtosecond-laser-made "black silicon" as a function of the annealing conditions were investigated. We found that the annealing process changes the surface morphology and absorpt...The optical absorption properties of femtosecond-laser-made "black silicon" as a function of the annealing conditions were investigated. We found that the annealing process changes the surface morphology and absorption spectroscopy of the "black silicon" samples, and obtained a maximum sub-band-gap absorptance value of approximately 30% by annealing at 1000 ~C for 30 min. The thermal relaxation and atomic structural transformation mechanisms are used to describe the lat- tice recovery and the increase and decrease of the substitutional dopant atom concentration in the microstructured surface during the annealing. Our results confirm that: i) owing to the ther- mal relaxation, the lattice defects decrease with the increase of the annealing temperature; ii) the quasi-substitutional and interstitial configurations of the doped atoms transform into substitutional arrangements when the annealing temperature increases; iii) the quasi-substitutional and intersti- tial configurations with higher energies of the doped atoms transform into interstitial configurations with the lowest energy after high-temperature annealing for a long period of time, causing the de- activation or reactivation of the sub-band-gap absorptance by diffusion. The results demonstrate that the annealing can improve the properties of "black silicon", including defects repairing, carrier lifetime lengthening, and retention of a high absorptive performance.展开更多
Pump-probe differential reflection and transmission spectroscopy is a very effective tool to study the nonequilibrium carrier dynamics of graphene. The reported sign of differential reflection from graphene is not exp...Pump-probe differential reflection and transmission spectroscopy is a very effective tool to study the nonequilibrium carrier dynamics of graphene. The reported sign of differential reflection from graphene is not explicitly explained and not consistent. Here, we study the differential reflection and transmission signals of graphene on a dielectric substrate. The results reveal the sign of differential reflection changes with the incident direction of the probe beam with respect to the substrate. The obtained theory can be applied to predict the differential signals of other two-dimensional materials placed on various dielectric substrates.展开更多
Higher-order exceptional points(EPs), which appear as multifold degeneracies in the spectra of non-Hermitian systems, are garnering extensive attention in various multidisciplinary fields. However, constructing higher...Higher-order exceptional points(EPs), which appear as multifold degeneracies in the spectra of non-Hermitian systems, are garnering extensive attention in various multidisciplinary fields. However, constructing higher-order EPs still remains a challenge due to the strict requirement of the system symmetries. Here we demonstrate that higher-order EPs can be judiciously fabricated in parity–time(PT)-symmetric staggered rhombic lattices by introducing not only on-site gain/loss but also non-Hermitian couplings. Zero-energy flatbands persist and symmetry-protected third-order EPs(EP3s) arise in these systems owing to the non-Hermitian chiral/sublattice symmetry, but distinct phase transitions and propagation dynamics occur. Specifically, the EP3 arises at the Brillouin zone(BZ) boundary in the presence of on-site gain/loss. The single-site excitations display an exponential power increase in the PT-broken phase. Meanwhile, a nearly flatband sustains when a small lattice perturbation is applied. For the lattices with non-Hermitian couplings, however, the EP3 appears at the BZ center. Quite remarkably, our analysis unveils a dynamical delocalization-localization transition for the excitation of the dispersive bands and a quartic power increase beyond the EP3. Our scheme provides a new platform toward the investigation of the higher-order EPs and can be further extended to the study of topological phase transitions or nonlinear processes associated with higher-order EPs.展开更多
The topological photonics plays an important role in the fields of fundamental physics and photonic devices.The traditional method of designing topological system is based on the momentum space,which is not a direct a...The topological photonics plays an important role in the fields of fundamental physics and photonic devices.The traditional method of designing topological system is based on the momentum space,which is not a direct and convenient way to grasp the topological properties,especially for the perturbative structures or coupled systems.Here,we propose an interdisciplinary approach to study the topological systems in real space through combining the information entropy and topological photonics.As a proof of concept,the Kagome model has been analyzed with information entropy.We reveal that the bandgap closing does not correspond to the topological edge state disappearing.This method can be used to identify the topological phase conveniently and directly,even the systems with perturbations or couplings.As a promotional validation,Su-Schrieffer-Heeger model and the valley-Hall photonic crystal have also been studied based on the information entropy method.This work provides a method to study topological photonic phase based on information theory,and brings inspiration to analyze the physical properties by taking advantage of interdisciplinarity.展开更多
Higher-order topological insulators(HOTIs)are recently discovered topological phases,possessing symmetry-protected corner states with fractional charges.An unexpected connection between these states and the seemingly ...Higher-order topological insulators(HOTIs)are recently discovered topological phases,possessing symmetry-protected corner states with fractional charges.An unexpected connection between these states and the seemingly unrelated phenomenon of bound states in the continuum(BICs)was recently unveiled.When nonlinearity is added to the HOTI system,a number of fundamentally important questions arise.For example,how does nonlinearity couple higher-order topological BICs with the rest of the system,including continuum states?In fact,thus far BICs in nonlinear HOTIs have remained unexplored.Here we unveil the interplay of nonlinearity,higher-order topology,and BICs in a photonic platform.We observe topological corner states that are also BICs in a laser-written second-order topological lattice and further demonstrate their nonlinear coupling with edge(but not bulk)modes under the proper action of both self-focusing and defocusing nonlinearities.Theoretically,we calculate the eigenvalue spectrum and analog of the Zak phase in the nonlinear regime,illustrating that a topological BIC can be actively tuned by nonlinearity in such a photonic HOTI.Our studies are applicable to other nonlinear HOTI systems,with promising applications in emerging topology-driven devices.展开更多
Bacterial biofilms underlie many persistent infections,posing major hurdles in antibiotic treatment.Here we design and demonstrate‘tug-of-war’optical tweezers that can facilitate the assessment of cell–cell adhesio...Bacterial biofilms underlie many persistent infections,posing major hurdles in antibiotic treatment.Here we design and demonstrate‘tug-of-war’optical tweezers that can facilitate the assessment of cell–cell adhesion—a key contributing factor to biofilm development,thanks to the combined actions of optical scattering and gradient forces.With a customized optical landscape distinct from that of conventional tweezers,not only can such‘tug-of-war’tweezers stably trap and stretch a rod-shaped bacterium in the observing plane,but,more importantly,they can also impose a tunable lateral force that pulls apart cellular clusters without any tethering or mechanical movement.As a proof of principle,we examined a Sinorhizobium meliloti strain that forms robust biofilms and found that the strength of intercellular adhesion depends on the growth medium.This technique may herald new photonic tools for optical manipulation and biofilm study,as well as other biological applications.展开更多
A wrinkle-based thin-film device can be used to develop optoelectronic devices, photovoltaics, and strain sensors. Here, we propose a stable and ultrasensitive strain sensor based on two-dimensional (2D) semiconduct...A wrinkle-based thin-film device can be used to develop optoelectronic devices, photovoltaics, and strain sensors. Here, we propose a stable and ultrasensitive strain sensor based on two-dimensional (2D) semiconducting gallium selenide (GaSe) for the first time. The response of the electrical re- sistance to strain was demonstrated to be very sensitive for the GaSe-based strain sensor, and it reached a gauge factor of -4.3, which is better than that of graphene-based strain sensors. The results show us that strain engineering on a nanoscale can be used not only in strain sensors but also for a wide range of applications, such as flexible field-effect transistors, stretchable electrodes, and flexible solar cells.展开更多
The characteristics of whispering gallery modes(WGM) in silver-coated inverted-wedge silica microdisks are theoretically investigated by using finite element method. Dielectric TE mode always exists in silver-coated i...The characteristics of whispering gallery modes(WGM) in silver-coated inverted-wedge silica microdisks are theoretically investigated by using finite element method. Dielectric TE mode always exists in silver-coated inverted-wedge resonators; dielectric TM mode tends to couple with SPP modes; only pure interior surface plasmonic polariton(SPP) mode but not pure exterior SPP mode is observed in contrast to the metal-coated cylindrical and toroidal resonators. The dependence of quality factor of different kinds of WGMs on the radius of the resonator and the thickness of the coated silver layer are systematically analyzed. We find that the quality factors of the hybrid WGMs associated with SPP mode can reach 104. The maximum light intensity enhancement in ambient for a hybrid mode consisting of a dielectric TM mode and an exterior SPP mode can be obtained when a silver film of thickness ~40 nm is deposited. The silver-coated inverted-wedge silica resonators may be widely applied in sensing and surface enhanced Raman scattering.展开更多
The discovery of topological phases and topological insulators has revolutionized several fields of natural science,including condensed matter physics,materials science,and photonics.Topological concepts have been imp...The discovery of topological phases and topological insulators has revolutionized several fields of natural science,including condensed matter physics,materials science,and photonics.Topological concepts have been implemented in a variety of materials and in a broad range of wave systems ranging from electronic,atomic,photonic,plasmonic,polaritonic,to microwave,acoustic,and mechanical waves.展开更多
We demonstrate,both analytically and experimentally,free-space pin-like optical vortex beams (POVBs). Such angular-momentum-carrying beams feature tunable peak intensity and undergo robust antidiffracting propagation,...We demonstrate,both analytically and experimentally,free-space pin-like optical vortex beams (POVBs). Such angular-momentum-carrying beams feature tunable peak intensity and undergo robust antidiffracting propagation,realized by judiciously modulating both the amplitude and the phase profile of a standard laser beam.Specifically,they are generated by superimposing a radially symmetric power-law phase on a helical phase structure,which allows the inclusion of an orbital angular momentum term to the POVBs. During propagation in free space,these POVBs initially exhibit autofocusing dynamics,and subsequently their amplitude patterns morph into a high-order Bessel-like profile characterized by a hollow core and an annular main lobe with a constant or tunable width during propagation. In contrast with numerous previous endeavors on Bessel beams,our work represents the first demonstration of long-distance free-space generation of optical vortex "pins" with their peak intensity evolution controlled by the impressed amplitude structure. Both the Poynting vectors and the optical radiation forces associated with these beams are also numerically analyzed,revealing novel properties that may be useful for a wide range of applications.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (NSFC) (61675169, 61377055 and 11634010), the National Key R&D Program of China (2017YFA0303800), and the Fundamental Research Funds for the Central Universities (3102017zy021, 3102017HQZZ 022).
文摘We present a detailed analysis on mode evolution of gratingcoupled surface plasmonic polaritons (SPPs) on a conical metal tip based on the guidedwave theory. The eigenvalue equations for SPPs modes are discussed, revealing that cylindrical metal waveguides only support TM01 and HEm1 surface modes. During propagation on the metal tip, the gratingcoupled SPPs are converted to HE31, HE21, HE11 and TM01 successively, and these modes are sequentially cut off except TM01. The TM01 mode further propagates with drastically increasing effective mode index and is converted to localized surface plasmons (LSPs) at the tip apex, which is responsible for plasmonic nanofocusing. The gapmode plasmons can be excited with the focusing TM01 mode by approaching a metal substrate to the tip apex, resulting in further enhanced electric field and reduced size of the plasmonic focus.
基金supported by the K. C. Wong Education Foundation (GJTD-2018-08)the Natural Science Foundation of China (NSFC) (Grants 11804334, 51705192)+1 种基金the China Postdoctoral Science Foundation (2017M611325)the National Postdoctoral Program for Innovative Talents (BX201600064)
文摘Although abundant research on the anisotropy of van der Waals(vd W)materials has been published,we undertake an in-depth study of their optical properties as they have an important guiding role for light control in two-dimensional(2D)nanospace.As an example,we study the reflectance of few-layered black phosphorus(BP)in the total internal reflection(TIR)mode in detail.We demonstrate that its optical anisotropy can be changed on a large scale by varying the incident angles,polarization states,and the in-plane rotation angles of the BP samples.Theoretical analysis indicates that the phenomena observed are common to all the atom-thick biaxial crystals,so these conclusions can be widely applied to other anisotropic 2D materials.This research furthers the current understanding of the properties of BP more comprehensively,and provides guidance for developing new optoelectronic applications,especially when BP and other atom-thick biaxial crystals are integrated with TIR devices.
基金supported by the National Natural Science Foundation of China(Nos.51971070,T2225017,and 10974037)the National Key Research and Development Program of China(No.2016YFA0200403)+2 种基金the Natural Science Foundation of Shandong Province(No.ZR2021QF003)the CAS Strategy Pilot Program(No.XDA 09020300)the Eu-FP7 Project(No.247644).
文摘When a laser beam writes on a metallic film,it usually coarsens and deuniformizes grains because of Ostwald ripening,similar to the case of annealing.Here we show an anomalous refinement effect of metal grains:A metallic silver film with large grains melts and breaks into uniform,close-packed,and ultrafine(~10 nm)grains by laser direct writing with a nanoscale laser spot size and nanosecond pulse that causes localized heating and adaptive shock-cooling.This method exhibits high controllability in both grain size and uniformity,which lies in a linear relationship between the film thickness(h)and grain size(D),D∝h.The linear relationship is significantly different from the classical spinodal dewetting theory obeying a nonlinear relationship(D∝h5/3)in common laser heating.We also demonstrate the application of such a silver film with a grain size of~10.9 nm as a surface-enhanced Raman scattering chip,exhibiting superhigh spatial-uniformity and low detection limit down to 10-15 M.This anomalous refinement effect is general and can be extended to many other metallic films.
基金National Natural Science Foundation of China(11504186,61575098,91750204)National Key R&D Program of China(2017YFA0303800)Higher Education Discipline Innovation Project(B07013)
文摘We demonstrate both experimentally and theoretically the trapping and guiding of a weak signal pulse via a selfaccelerating Airy pulse. This is achieved by launching the Airy pulse in the anomalous dispersion regime of an optical fiber, thereby inducing a gravity-like potential that can compel the signal pulse in the normal dispersion regime to undergo co-acceleration. Such guiding pulse by pulse can be controlled at ease simply by altering the acceleration conditions of the Airy pulse. Furthermore, the guided signal can be featured with either single or double peaks, which is explained by using the theory of fundamental and second-order quasi-modes associated with the gravity-like potential. Our work represents, to our knowledge, the first demonstration of pulse guiding in the anomalous dispersion regime of any self-accelerating pulse.
基金supported by the National Key R&D Program of China under Grant No.2017YFA0303800the National Natural Science Foundation(11922408,91750204,11674180),PCSIRT+5 种基金the 111 Project(No.B07013)in Chinasupport in part by the Croatian Science Foundation Grant No.IP-2016-06-5885 SynthMagIAthe QuantiXLie Center of Excellence,a project co-financed by the Croatian Government and European Union through the European Regional Development Fund-the Competitiveness and Cohesion Operational Programme(Grant KK.01.1.1.01.0004)supported by the Australian Research Council(DE19010043)supported by the Institute for Basic Science in Korea(IBS-R024-Y1)support from the Russian Foundation for Basic Research(grant No.19-52-12053).
文摘The flourishing of topological photonics in the last decade was achieved mainly due to developments in linear topological photonic structures.However,when nonlinearity is introduced,many intriguing questions arise.For example,are there universal fingerprints of the underlying topology when modes are coupled by nonlinearity,and what can happen to topological invariants during nonlinear propagation?To explore these questions,we experimentally demonstrate nonlinearity-induced coupling of light into topologically protected edge states using a photonic platform and develop a general theoretical framework for interpreting the mode-coupling dynamics in nonlinear topological systems.Performed on laser-written photonic Su-Schrieffer-Heeger lattices,our experiments show the nonlinear coupling of light into a nontrivial edge or interface defect channel that is otherwise not permissible due to topological protection.Our theory explains all the observations well.Furthermore,we introduce the concepts of inherited and emergent nonlinear topological phenomena as well as a protocol capable of revealing the interplay of nonlinearity and topology.These concepts are applicable to other nonlinear topological systems,both in higher dimensions and beyond our photonic platform.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.11974282,61675169,and 91950207)。
文摘We present the generation of the nanosecond cylindrical vector beams(CVBs)in a two-mode fiber(TMF)and its applications of stimulated Raman scattering.The nanosecond(1064 nm,10 ns,10 Hz)CVBs have been directly produced with mode conversion efficiency of~18 d B(98.4%)via an acoustically induced fiber grating,and then the stimulated Raman scattering signal is generated based on the transmission of the nanosecond CVBs in a 100-m-long TMF.The transverse mode intensity and polarization distributions of the first-order Stokes shift component(1116.8 nm)are consistent with the nanosecond CVBs pump pulse.
基金the National Key R&D Program of China(2017YFA0303800)the National Natural Science Foundation of China(91750204,11504184,11604058)+3 种基金the NSERC through the Steacie,Strategic,Discovery and Acceleration Grants Schemesthe Canada Research Chair Program(Canada)additional support by the Government of the Russian Federation through the ITMO Fellowship and Professorship Program(grant 074-U 01)the 1000 Talents Sichuan Program in China.
文摘Osmotic conditions play an important role in the cell properties of human red blood cells(RBCs),which are crucial for the pathological analysis of some blood diseases such as malaria.Over the past decades,numerous efforts have mainly focused on the study of the RBC biomechanical properties that arise from the unique deformability of erythrocytes.Here,we demonstrate nonlinear optical effects from human RBCs suspended in different osmotic solutions.Specifically,we observe self-trapping and scattering-resistant nonlinear propagation of a laser beam through RBC suspensions under all three osmotic conditions,where the strength of the optical nonlinearity increases with osmotic pressure on the cells.This tunable nonlinearity is attributed to optical forces,particularly the forward-scattering and gradient forces.Interestingly,in aged blood samples(with lysed cells),a notably different nonlinear behavior is observed due to the presence of free hemoglobin.We use a theoretical model with an optical force-mediated nonlocal nonlinearity to explain the experimental observations.Our work on light self-guiding through scattering biosoft-matter may introduce new photonic tools for noninvasive biomedical imaging and medical diagnosis.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11775083, and 11374108)the Science and Technology Program of Guangzhou (Grant No. 2019050001)+1 种基金the National Key R&D Program of China (Grant No. 2017YFA0303800)the Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation (Grant No. pdjh2020a0149)。
文摘Light-field shaping technology plays an important role in optics and nanophotonics. For instance, the spatially structured light field, which exhibits characteristic features in complex phases, light intensity, and polarization, is crucial to understanding new physical phenomena and exploring practical applications. Herein, we propose and demonstrate a new class of tunable circular Pearcey beams(TCPBs) by imposing the annular spiral-zone phase(ASZP). Through experiments, we used a spatial light modulator to generate TCPBs based on their spiral phase distribution, and numerically analyzed the generation and control of the beams with unusual autofocusing and self-rotating dynamics. ASZP is a general term for complex phases composed of the spiral phase,equiphase, and radial phase. TCPB typically exhibits dynamical properties, including abrupt autofocusing, automatic generation of optical bottles, and self-rotation of the beam pattern, during propagation. Besides, the number of generated optical bottles can be modulated by the superposition mode of ASZP and the number of subphases. We found that an inappropriate superposition mode leads to distortion, and we analyzed the underlying mechanism. Potential applications of TCPBs in optical manipulation are also discussed, presenting an exemplary role desired for light-field manipulation.
基金the National Key R&D Program of China(2022YFA1404800)the National Natural Science Foundation of China(12134006,12274242)+4 种基金the Natural Science Foundation of Tianjin(21JCJQJC00050)the QuantiXLie Center of Excellence,a project co-financed by the Croatian Government and the European Union through the European Regional Development Fund the Competitiveness and Cohesion Operational Programme(KK.01.1.1.01.0004)the 66 Postdoctoral Science Grant of Chinathe NSERC Discovery Grantthe Canada Research Chair Programs.
文摘The orbital degrees of freedom play a pivotal role in understanding fundamental phenomena in solid-state materials as well as exotic quantum states of matter including orbital superfluidity and topological semimetals.Despite tremendous efforts in engineering synthetic cold-atom,as well as electronic and photonic lattices to explore orbital physics,thus far high orbitals in an important class of materials,namely,higher-order topological insulators(HOTIs),have not been realized.Here,we demonstrate p-orbital corner states in a photonic HOTI,unveiling their underlying topological invariant,symmetry protection,and nonlinearity-induced dynamical rotation.In a Kagome-type HOTI,we find that the topological protection of p-orbital corner states demands an orbital-hopping symmetry in addition to generalized chiral symmetry.Due to orbital hybridization,nontrivial topology of the p-orbital HOTI is“hidden”if bulk polarization is used as the topological invariant,but well manifested by the generalized winding number.Our work opens a pathway for the exploration of intriguing orbital phenomena mediated by higher-band topology applicable to a broad spectrum of systems.
基金supported by the National Natural Science Foundation of China(Nos.62205158 and 11874229)the China Postdoctoral Science Foundation(No.2022M711709)+2 种基金the Foundation of State Key Laboratory of Laser Interaction with Matter(No.SKLLIM2101)the 111 Project(No.B23045)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_13R29).
文摘Compact terahertz(THz)devices,especially for nonlinear THz components,have received more and more attention due to their potential applications in THz nonlinearity-based sensing,communications,and computing devices.However,effective means to enhance,control,and confine the nonlinear harmonics of THz waves remain a great challenge for micro-scale THz nonlinear devices.In this work,we have established a technique for nonlinear harmonic generation of THz waves based on phonon polariton-enhanced giant THz nonlinearity in a 2D-topologically protected valley photonic microcavity.Effective THz harmonic generation has been observed in both noncentrosymmetric and centrosymmetric nonlinear materials.These results can provide a valuable reference for the generation and control of THz high-harmonics,thus developing new nonlinear devices in the THz regime.
文摘The optical absorption properties of femtosecond-laser-made "black silicon" as a function of the annealing conditions were investigated. We found that the annealing process changes the surface morphology and absorption spectroscopy of the "black silicon" samples, and obtained a maximum sub-band-gap absorptance value of approximately 30% by annealing at 1000 ~C for 30 min. The thermal relaxation and atomic structural transformation mechanisms are used to describe the lat- tice recovery and the increase and decrease of the substitutional dopant atom concentration in the microstructured surface during the annealing. Our results confirm that: i) owing to the ther- mal relaxation, the lattice defects decrease with the increase of the annealing temperature; ii) the quasi-substitutional and interstitial configurations of the doped atoms transform into substitutional arrangements when the annealing temperature increases; iii) the quasi-substitutional and intersti- tial configurations with higher energies of the doped atoms transform into interstitial configurations with the lowest energy after high-temperature annealing for a long period of time, causing the de- activation or reactivation of the sub-band-gap absorptance by diffusion. The results demonstrate that the annealing can improve the properties of "black silicon", including defects repairing, carrier lifetime lengthening, and retention of a high absorptive performance.
基金supported by the Chinese National Key Basic Research Special Fund (2011CB922003)International Science and Technology Cooperation Program of China (2013DFA51430)+1 种基金NSFC—National Natural Science Foundation of China (11174159, 11374164, 11304166)the Fundamental Research Funds for the Central Universities (65145005)
文摘Pump-probe differential reflection and transmission spectroscopy is a very effective tool to study the nonequilibrium carrier dynamics of graphene. The reported sign of differential reflection from graphene is not explicitly explained and not consistent. Here, we study the differential reflection and transmission signals of graphene on a dielectric substrate. The results reveal the sign of differential reflection changes with the incident direction of the probe beam with respect to the substrate. The obtained theory can be applied to predict the differential signals of other two-dimensional materials placed on various dielectric substrates.
基金National Key Research and Development Program of China(2021YFA0718300,2021YFA1400243,2021YFA1400900)National Natural Science Foundation of China(11922408,12074105,12074106,12134006,12234012,12247146,61835013)111 Project(B07013)
文摘Higher-order exceptional points(EPs), which appear as multifold degeneracies in the spectra of non-Hermitian systems, are garnering extensive attention in various multidisciplinary fields. However, constructing higher-order EPs still remains a challenge due to the strict requirement of the system symmetries. Here we demonstrate that higher-order EPs can be judiciously fabricated in parity–time(PT)-symmetric staggered rhombic lattices by introducing not only on-site gain/loss but also non-Hermitian couplings. Zero-energy flatbands persist and symmetry-protected third-order EPs(EP3s) arise in these systems owing to the non-Hermitian chiral/sublattice symmetry, but distinct phase transitions and propagation dynamics occur. Specifically, the EP3 arises at the Brillouin zone(BZ) boundary in the presence of on-site gain/loss. The single-site excitations display an exponential power increase in the PT-broken phase. Meanwhile, a nearly flatband sustains when a small lattice perturbation is applied. For the lattices with non-Hermitian couplings, however, the EP3 appears at the BZ center. Quite remarkably, our analysis unveils a dynamical delocalization-localization transition for the excitation of the dispersive bands and a quartic power increase beyond the EP3. Our scheme provides a new platform toward the investigation of the higher-order EPs and can be further extended to the study of topological phase transitions or nonlinear processes associated with higher-order EPs.
基金supported by the National Natural Science Foundation of China(Grant Nos.92150302,12274031 and 62175009)the Innovation Program for Quantum Science and Technology(No.2021ZD0301500)+3 种基金Beijing Institute of Technology Research Fund Program for Teli Young Fellows,Beijing Institute of Technology Science and Technology Innovation Plan Innovative Talents Science and Technology Funding Special Plan(2022CX01006)Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(No.KF202114)the Natural Science Foundation of Hebei Province(No.A2021201009)China Postdoctoral Science Foundation(2023M740121).
文摘The topological photonics plays an important role in the fields of fundamental physics and photonic devices.The traditional method of designing topological system is based on the momentum space,which is not a direct and convenient way to grasp the topological properties,especially for the perturbative structures or coupled systems.Here,we propose an interdisciplinary approach to study the topological systems in real space through combining the information entropy and topological photonics.As a proof of concept,the Kagome model has been analyzed with information entropy.We reveal that the bandgap closing does not correspond to the topological edge state disappearing.This method can be used to identify the topological phase conveniently and directly,even the systems with perturbations or couplings.As a promotional validation,Su-Schrieffer-Heeger model and the valley-Hall photonic crystal have also been studied based on the information entropy method.This work provides a method to study topological photonic phase based on information theory,and brings inspiration to analyze the physical properties by taking advantage of interdisciplinarity.
基金This research is supported by the National Key R&D Program of China under Grant No.2017YFA0303800the National Natural Science Foundation(11922408,91750204,11674180)+2 种基金PCSIRT,and the 111 Project(No.B07013)in ChinaD.B.acknowledges support from the 66 Postdoctoral Science Grant of ChinaD.J.and H.B.acknowledge support in part by the Croatian Science Foundation Grant No.IP-2016-06-5885 SynthMagIA and the QuantiXLie Center of Excellence,a project co-financed by the Croatian Government and European Union through the European Regional Development Fund-the Competitiveness and Cohesion Operational Programme(Grant KK.01.1.1.01.0004)。
文摘Higher-order topological insulators(HOTIs)are recently discovered topological phases,possessing symmetry-protected corner states with fractional charges.An unexpected connection between these states and the seemingly unrelated phenomenon of bound states in the continuum(BICs)was recently unveiled.When nonlinearity is added to the HOTI system,a number of fundamentally important questions arise.For example,how does nonlinearity couple higher-order topological BICs with the rest of the system,including continuum states?In fact,thus far BICs in nonlinear HOTIs have remained unexplored.Here we unveil the interplay of nonlinearity,higher-order topology,and BICs in a photonic platform.We observe topological corner states that are also BICs in a laser-written second-order topological lattice and further demonstrate their nonlinear coupling with edge(but not bulk)modes under the proper action of both self-focusing and defocusing nonlinearities.Theoretically,we calculate the eigenvalue spectrum and analog of the Zak phase in the nonlinear regime,illustrating that a topological BIC can be actively tuned by nonlinearity in such a photonic HOTI.Our studies are applicable to other nonlinear HOTI systems,with promising applications in emerging topology-driven devices.
文摘Bacterial biofilms underlie many persistent infections,posing major hurdles in antibiotic treatment.Here we design and demonstrate‘tug-of-war’optical tweezers that can facilitate the assessment of cell–cell adhesion—a key contributing factor to biofilm development,thanks to the combined actions of optical scattering and gradient forces.With a customized optical landscape distinct from that of conventional tweezers,not only can such‘tug-of-war’tweezers stably trap and stretch a rod-shaped bacterium in the observing plane,but,more importantly,they can also impose a tunable lateral force that pulls apart cellular clusters without any tethering or mechanical movement.As a proof of principle,we examined a Sinorhizobium meliloti strain that forms robust biofilms and found that the strength of intercellular adhesion depends on the growth medium.This technique may herald new photonic tools for optical manipulation and biofilm study,as well as other biological applications.
文摘A wrinkle-based thin-film device can be used to develop optoelectronic devices, photovoltaics, and strain sensors. Here, we propose a stable and ultrasensitive strain sensor based on two-dimensional (2D) semiconducting gallium selenide (GaSe) for the first time. The response of the electrical re- sistance to strain was demonstrated to be very sensitive for the GaSe-based strain sensor, and it reached a gauge factor of -4.3, which is better than that of graphene-based strain sensors. The results show us that strain engineering on a nanoscale can be used not only in strain sensors but also for a wide range of applications, such as flexible field-effect transistors, stretchable electrodes, and flexible solar cells.
基金supported by the National Key Basic Research Program of China(Grant Nos.2011CB922003 and 2013CB328702)the National Natural Science Foundation of China(Grant Nos.11374165,11174153 and 10804054)the Program of Introducing Talents of Discipline to Universities(Grant No.B07013)
文摘The characteristics of whispering gallery modes(WGM) in silver-coated inverted-wedge silica microdisks are theoretically investigated by using finite element method. Dielectric TE mode always exists in silver-coated inverted-wedge resonators; dielectric TM mode tends to couple with SPP modes; only pure interior surface plasmonic polariton(SPP) mode but not pure exterior SPP mode is observed in contrast to the metal-coated cylindrical and toroidal resonators. The dependence of quality factor of different kinds of WGMs on the radius of the resonator and the thickness of the coated silver layer are systematically analyzed. We find that the quality factors of the hybrid WGMs associated with SPP mode can reach 104. The maximum light intensity enhancement in ambient for a hybrid mode consisting of a dielectric TM mode and an exterior SPP mode can be obtained when a silver film of thickness ~40 nm is deposited. The silver-coated inverted-wedge silica resonators may be widely applied in sensing and surface enhanced Raman scattering.
基金the support from the National Key R&D Program of China under Grant(No.2017YFA0303800).
文摘The discovery of topological phases and topological insulators has revolutionized several fields of natural science,including condensed matter physics,materials science,and photonics.Topological concepts have been implemented in a variety of materials and in a broad range of wave systems ranging from electronic,atomic,photonic,plasmonic,polaritonic,to microwave,acoustic,and mechanical waves.
基金National Key Research and Development Program of China (2017YFA0303800)National Natural Science Foundation of China (11674180,61575098,91750204)+3 种基金111 Project in China (B07013)NSERC Discovery and Strategic grants in CanadaMESI in Quebec66 Postdoctoral Science Grant of China。
文摘We demonstrate,both analytically and experimentally,free-space pin-like optical vortex beams (POVBs). Such angular-momentum-carrying beams feature tunable peak intensity and undergo robust antidiffracting propagation,realized by judiciously modulating both the amplitude and the phase profile of a standard laser beam.Specifically,they are generated by superimposing a radially symmetric power-law phase on a helical phase structure,which allows the inclusion of an orbital angular momentum term to the POVBs. During propagation in free space,these POVBs initially exhibit autofocusing dynamics,and subsequently their amplitude patterns morph into a high-order Bessel-like profile characterized by a hollow core and an annular main lobe with a constant or tunable width during propagation. In contrast with numerous previous endeavors on Bessel beams,our work represents the first demonstration of long-distance free-space generation of optical vortex "pins" with their peak intensity evolution controlled by the impressed amplitude structure. Both the Poynting vectors and the optical radiation forces associated with these beams are also numerically analyzed,revealing novel properties that may be useful for a wide range of applications.