期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多区域融合注意力网络模型下的核性白内障分类 被引量:4
1
作者 章晓庆 肖尊杰 +4 位作者 东田理沙 陈婉 胡衍 袁进 刘江 《中国图象图形学报》 CSCD 北大核心 2022年第3期948-960,共13页
目的核性白内障是主要致盲和导致视觉损害的眼科疾病,早期干预和白内障手术可以有效改善患者的视力和生活质量。眼前节光学相干断层成像图像(anterior segment optical coherence tomography,AS-OCT)能够非接触、客观和快速地获取白内... 目的核性白内障是主要致盲和导致视觉损害的眼科疾病,早期干预和白内障手术可以有效改善患者的视力和生活质量。眼前节光学相干断层成像图像(anterior segment optical coherence tomography,AS-OCT)能够非接触、客观和快速地获取白内障混浊信息。临床研究已经发现在AS-OCT图像中核性白内障严重程度与核性区域像素特征,如均值存在强相关性和高可重复性。但目前基于AS-OCT图像的自动核性白内障分类工作较少且分类结果还有较大提升空间。为此,本文提出一种新颖的多区域融合注意力网络(multi-region fusion attention network,MRA-Net)对AS-OCT图像中的核性白内障严重程度进行精准分类。方法在提出的多区域融合注意力模型中,本文设计了一个多区域融合注意力模块(multi-region fusion attention,MRA),对不同核性区域特征表示进行融合来增强分类结果;另外,本文验证了以人和眼为单位的AS-OCT图像数据集拆分方式对核性白内障分类结果的影响。结果在一个自建的AS-OCT图像数据集上结果表明,本文模型的总体分类准确率为87.78%,比对比方法至少提高了1%。在10种分类算法上的结果表明:以眼为单位的AS-OCT数据集优于以人为单位的AS-OCT数据集的分类结果,F1和Kappa评价指标分别最大提升了4.03%和8%。结论本文模型考虑了特征图不同区域特征分布的差异性,使核性白内障分类更加准确;不同数据集拆分方式的结果表明,考虑到同一个人两只眼的核性白内障严重程度相似,建议白内障的AS-OCT图像数据集拆分以人为单位。 展开更多
关键词 核性白内障分类 眼前节光学相干断层成像图像(AS-OCT) 多区域融合注意力模块 深度学习 核性区域
原文传递
生成对抗式网络及其医学影像应用研究综述 被引量:7
2
作者 张颖麟 胡衍 +1 位作者 东田理沙 刘江 《中国图象图形学报》 CSCD 北大核心 2022年第3期687-703,共17页
生成对抗式网络(generative adversarial network,GAN)由负责学习数据分布的生成器和负责鉴别样本真伪的判别器构成,二者在相互对抗过程中互相学习逐渐变强。该网络模型使深度学习方法可以自动学习损失函数,减少了对专家知识的依赖,已... 生成对抗式网络(generative adversarial network,GAN)由负责学习数据分布的生成器和负责鉴别样本真伪的判别器构成,二者在相互对抗过程中互相学习逐渐变强。该网络模型使深度学习方法可以自动学习损失函数,减少了对专家知识的依赖,已经广泛应用于自然图像处理领域,对解决医学影像处理的相关瓶颈问题亦具有巨大应用前景。本文旨在找到生成对抗式网络与医学影像领域面临挑战的结合点,通过分析已有工作对未来研究方向进行展望,为该领域研究提供参考。1)阐述了生成对抗式网络的基本原理,从任务拆分、条件约束以及图像到图像的翻译等角度对其衍生模型进行分析回顾;2)对生成对抗式网络在医学影像领域中的数据增广、模态迁移、图像分割以及去噪等方面的应用进行回顾,分析各方法的优缺点与适用范围;3)对现有图像生成质量评估方法进行小结;4)总结生成对抗式网络在医学影像领域的研究进展,并结合该领域问题特性,指出现有理论应用存在的不足与改进方向。生成对抗式网络提出以来,理论不断完善,在医学影像的处理应用中也取得了长足发展,但仍然存在一些亟待解决的问题,包括3维数据合成、几何结构合理性保持、无标记和未配对数据使用以及多模态数据交叉应用等。 展开更多
关键词 生成对抗式网络(GAN) 医学影像 深度学习 数据增广 模态迁移 图像分割 图像去噪
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部