In structure of manufacture of PFER (primary fuel and energy resources) in Central Asia region the leading place occupies now organic fuel. Thus about half of total amount of power resources it is necessary on the n...In structure of manufacture of PFER (primary fuel and energy resources) in Central Asia region the leading place occupies now organic fuel. Thus about half of total amount of power resources it is necessary on the natural gas which basic stocks are concentrated in Turkmenistan and Uzbekistan. More than 95% of all electric power in Tajikistan is developed by hydroelectric power stations. Use of hydrogen as energy carrier allows to consider and solve power problems in close connection with ecological. At a large factory electrolysis of water with capacity of 450 t/day and more expenses of the electric power on 1 m3 hydrogen can be finished by capacity up to 4.0-4.5 kWt.h. At such expense of the electric power in a number of power situations electrolysis of water, even in modem conditions can become a competitive method of obtaining of hydrogen.展开更多
In this work the quantum chemistry Tersoff potential in combination with classical trajectory calculations was used to investigate the interaction of the DNA molecule with a carbon nanotube (CNT). The so-called hybrid...In this work the quantum chemistry Tersoff potential in combination with classical trajectory calculations was used to investigate the interaction of the DNA molecule with a carbon nanotube (CNT). The so-called hybrid approach—the classical and quantum-chemical modeling, where the force fields and interaction between particles are based on a definite (but not unique) description method, has been outlined in some detail. In such approach the molecules are described as a set of spheres and springs, thereby the spheres imitate classical particles and the spring the interaction force fields provided by quantum chemistry laws. The Tersoff potential in hybrid molecular dynamics (MD) simulations correctly describes the nature of covalent bonding. The aim of the present work was to estimate the dynamical and structural behavior of the DNA-CNT system at ambient temperature conditions. The dynamical configurations were built up for the DNA molecule interacting with the CNT. The analysis of generated МD configurations for the DNA-CNT complex was carried out. For the DNA-CNT system the observations reveal an encapsulation-like behavior of the DNA chain inside the CNT chain. The discussions were made on possible use of the DNA-CNT complex as a candidate material in drug delivery and related systems.展开更多
A thin film of copper phthalocyanine(CuPc),a p-type semiconductor,was deposited by thermal evaporation in vacuum on an n-type gallium arsenide(GaAs) single-crystal semiconductor substrate.Then semitransparent Ag t...A thin film of copper phthalocyanine(CuPc),a p-type semiconductor,was deposited by thermal evaporation in vacuum on an n-type gallium arsenide(GaAs) single-crystal semiconductor substrate.Then semitransparent Ag thin film was deposited onto the CuPc film also by thermal evaporation to fabricate the Ag/p-CuPc /n-GaAs/Ag cell.Photoconduction of the cell was measured in photoresistive and photodiode modes of operation. It was observed that with an increase in illumination,the photoresistance decreased in reverse bias while it increased in forward bias.The photocurrent was increased in reverse bias operation.In forward bias operation with an increase in illumination,the photocurrent showed a different behavior depending on the voltage applied.展开更多
A blend of copper oxide nanopowder (Cu2O), 3 wt.%, and poly-N-epoxypropylcarbazole (PEPC), 2 wt.%, in benzol was drop-casted on glass substrates with pre-deposited surface-type silver electrodes for the fabricatio...A blend of copper oxide nanopowder (Cu2O), 3 wt.%, and poly-N-epoxypropylcarbazole (PEPC), 2 wt.%, in benzol was drop-casted on glass substrates with pre-deposited surface-type silver electrodes for the fabrication of Cu20-PEPC nanocomposite thin films. The thicknesses of the Cu20-PEPC films were in the range of 10-13 μm. The effect of humidity on the electrical properties of the nanocomposite films was investigated by measuring the capacitance and dissipation of the samples at two different frequencies of the applied voltage: 120 Hz and 1 kHz. The AC resistance of the samples was determined from the dissipation values, and the DC resistance was measured directly. The effect of ageing on the humidity sensing properties of the nanocomposite was observed. After ageing, it was observed that at 120 Hz and 1 kHz, under a humidity of up to 86% RH, the capacitance of the cell increased by 85 and 8 times, and the resistance decreased by 345 and 157 times, accordingly, with respect to 30% RH conditions. It was found that with an increase in frequency, the capacitance and resistance of the samples decreased. It is assumed that the humidity response of the cell is associated with the diffusion of water vapors and doping of the semiconductor nanocomposite by water molecules.展开更多
文摘In structure of manufacture of PFER (primary fuel and energy resources) in Central Asia region the leading place occupies now organic fuel. Thus about half of total amount of power resources it is necessary on the natural gas which basic stocks are concentrated in Turkmenistan and Uzbekistan. More than 95% of all electric power in Tajikistan is developed by hydroelectric power stations. Use of hydrogen as energy carrier allows to consider and solve power problems in close connection with ecological. At a large factory electrolysis of water with capacity of 450 t/day and more expenses of the electric power on 1 m3 hydrogen can be finished by capacity up to 4.0-4.5 kWt.h. At such expense of the electric power in a number of power situations electrolysis of water, even in modem conditions can become a competitive method of obtaining of hydrogen.
文摘In this work the quantum chemistry Tersoff potential in combination with classical trajectory calculations was used to investigate the interaction of the DNA molecule with a carbon nanotube (CNT). The so-called hybrid approach—the classical and quantum-chemical modeling, where the force fields and interaction between particles are based on a definite (but not unique) description method, has been outlined in some detail. In such approach the molecules are described as a set of spheres and springs, thereby the spheres imitate classical particles and the spring the interaction force fields provided by quantum chemistry laws. The Tersoff potential in hybrid molecular dynamics (MD) simulations correctly describes the nature of covalent bonding. The aim of the present work was to estimate the dynamical and structural behavior of the DNA-CNT system at ambient temperature conditions. The dynamical configurations were built up for the DNA molecule interacting with the CNT. The analysis of generated МD configurations for the DNA-CNT complex was carried out. For the DNA-CNT system the observations reveal an encapsulation-like behavior of the DNA chain inside the CNT chain. The discussions were made on possible use of the DNA-CNT complex as a candidate material in drug delivery and related systems.
文摘A thin film of copper phthalocyanine(CuPc),a p-type semiconductor,was deposited by thermal evaporation in vacuum on an n-type gallium arsenide(GaAs) single-crystal semiconductor substrate.Then semitransparent Ag thin film was deposited onto the CuPc film also by thermal evaporation to fabricate the Ag/p-CuPc /n-GaAs/Ag cell.Photoconduction of the cell was measured in photoresistive and photodiode modes of operation. It was observed that with an increase in illumination,the photoresistance decreased in reverse bias while it increased in forward bias.The photocurrent was increased in reverse bias operation.In forward bias operation with an increase in illumination,the photocurrent showed a different behavior depending on the voltage applied.
基金the GIK Institute of Engineering Sciences and Technology for its support in this work
文摘A blend of copper oxide nanopowder (Cu2O), 3 wt.%, and poly-N-epoxypropylcarbazole (PEPC), 2 wt.%, in benzol was drop-casted on glass substrates with pre-deposited surface-type silver electrodes for the fabrication of Cu20-PEPC nanocomposite thin films. The thicknesses of the Cu20-PEPC films were in the range of 10-13 μm. The effect of humidity on the electrical properties of the nanocomposite films was investigated by measuring the capacitance and dissipation of the samples at two different frequencies of the applied voltage: 120 Hz and 1 kHz. The AC resistance of the samples was determined from the dissipation values, and the DC resistance was measured directly. The effect of ageing on the humidity sensing properties of the nanocomposite was observed. After ageing, it was observed that at 120 Hz and 1 kHz, under a humidity of up to 86% RH, the capacitance of the cell increased by 85 and 8 times, and the resistance decreased by 345 and 157 times, accordingly, with respect to 30% RH conditions. It was found that with an increase in frequency, the capacitance and resistance of the samples decreased. It is assumed that the humidity response of the cell is associated with the diffusion of water vapors and doping of the semiconductor nanocomposite by water molecules.