RAPD (randomly amplified polymorphic DNA) markers were employed to characterize polymorphisms among 5 provenances of Acacia leucophloea and to detect genetic relatedness of the species with 6 other acacias (A. holo...RAPD (randomly amplified polymorphic DNA) markers were employed to characterize polymorphisms among 5 provenances of Acacia leucophloea and to detect genetic relatedness of the species with 6 other acacias (A. holosericea, A. auriculiformis, A. mangium, A. dealbata, A. ferruginea, and A. nilotica) widely grown in India. Of 194 markers scored for the provenances, 29.38% exhibited polymorphism. Also, 326 markers were generated among 7 species of Acacia, accounting for 55.82% of the polymorphisms. The fifteen 10-mer primers employed were capable of producing 1-8 polymorphic bands for the provenances, and 6-17 for all seven species of Acacia. The genetic similarity coefficient based on Jaccard' s coefficient revealed that provenances Thirumangalam and Dharmapuri were closely related. The dendrogram based on a sequential agglomerative hierarchical non-overlapping (SAHN) clustering analysis grouped 4 provenances of A. leucophloea (Dharapuram, Thirumangalam, Pudukottai and Dharmapuri) into one cluster and the other provenance, Sendurai, into a separate cluster. The genetic similarity matrix for 7 Acacia species showed that A. nilotica and A. dealbata were distantly related, while A. holosericea and A. ferruginea were very closely related. Cluster analysis grouped the species of Acacias into 3 major groups of which A. dealbata alone formed a separate group. The RAPD markers generated 36 provenance-specific markers and 162 species-specific markers that could have strong applications for species identification and tree breeding programs for A. leucophloea and for other Acacia species included in this study.展开更多
Cotton occupies a pre-eminent place among cash crops as it guides the destiny of a large section of the farming community as well as that of a flourishing textile industry.As the yarn manufacturing industry has underg...Cotton occupies a pre-eminent place among cash crops as it guides the destiny of a large section of the farming community as well as that of a flourishing textile industry.As the yarn manufacturing industry has undergone a technological revolution,more emphasis is given to quality of the raw展开更多
A field experiment was conducted at TamilNadu agricultural university, Coimbatore during rabi 2011 to study the effect of time transplanting on growth, yield attributes and resultant seed quality of davana. The experi...A field experiment was conducted at TamilNadu agricultural university, Coimbatore during rabi 2011 to study the effect of time transplanting on growth, yield attributes and resultant seed quality of davana. The experiment was laid out with five different dates of transplanting viz., October 15th, November 1st, November 15th, December 1st and December 15th with the spacing of 15 × 7.5 cm and 125:125:75 NPK kg/ha were adopted in a randomized block design with four replications. The results revealed that the seedlings transplanted at 15th November recorded the maximum number of branches/plant, seed yield/plant, seed yield/plot, resultant seed germination and vigour index.展开更多
There are increasing concerns on the environmental impacts of intensive chemical agriculture. The effect of high agrochemical inputs used in intensive chemical farming was assessed on soil microbiological, molecular a...There are increasing concerns on the environmental impacts of intensive chemical agriculture. The effect of high agrochemical inputs used in intensive chemical farming was assessed on soil microbiological, molecular and biochemical properties in tropical Vertisols in India. Farm field sites under normal cultivation of arable crops using high inputs of fertilizers and pesticides in chili (Capsicum annum L., 5.0× dose for fertilizers and 1.5× dose for pesticides over normal inputs) and black gram (Vigna mungo L. Hepper, 2.2× dose for fertilizers and 2.3× dose for pesticides over normal inputs) were compared with adjacent sites using normal recommended doses. Organic carbon and basal respiration showed no response to high inputs of fertilizers and pesticides in soils of both crops. Labile carbon decreased by 10% in chili soils and increased by 24% in black gram soils under high input farming system. The proportion of soil labile carbon as a fraction of soil organic carbon was unaffected by high inputs. The labile carbon mineralization coefficient (qMLc) increased by 50.0% in chili soils, indicating that the soil microorganisms were under stress due to high agochemical inputs, whereas qMLc decreased by 36.4% in black gram soils. Copiotrophs increased due to high inputs in soils of both chili (63.1%) and black gram (47.1%). Oligotrophs increased by 10.8% in black gram soils but not in chili soils. The abundance of amoA gene reduced by 39.3% in chili soils due to high inputs and increased significantly by 110.8% in black gram soils. β-Glucosidase also increased by 27.2% and 325.0%, respectively. Acid phosphatase activity reduced by 29.2% due to high inputs in chili soils and increased by 105.0% in black gram soils. The use of high agrochemical inputs thus had adverse consequences on biological health in chili but not in black gram soils. In soils cultivated with black gram, the moderating effect of cultivating legumes and their beneficial effect on soil health were evident from the increase in soil labile carbon, lower qMLc, higher amoA gene and enzyme activities. Overall results showed that cultivation of legumes permits intensive chemical farming without deteriorating soil biological health.展开更多
基金supported by a grant from the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture,Forestry and Fisheries(IPET)through the AgriBioindustry Technology Development Programfunded by the Ministry of Agriculture,Food and Rural Affairs(MAFRA)(No.314009-3)
文摘RAPD (randomly amplified polymorphic DNA) markers were employed to characterize polymorphisms among 5 provenances of Acacia leucophloea and to detect genetic relatedness of the species with 6 other acacias (A. holosericea, A. auriculiformis, A. mangium, A. dealbata, A. ferruginea, and A. nilotica) widely grown in India. Of 194 markers scored for the provenances, 29.38% exhibited polymorphism. Also, 326 markers were generated among 7 species of Acacia, accounting for 55.82% of the polymorphisms. The fifteen 10-mer primers employed were capable of producing 1-8 polymorphic bands for the provenances, and 6-17 for all seven species of Acacia. The genetic similarity coefficient based on Jaccard' s coefficient revealed that provenances Thirumangalam and Dharmapuri were closely related. The dendrogram based on a sequential agglomerative hierarchical non-overlapping (SAHN) clustering analysis grouped 4 provenances of A. leucophloea (Dharapuram, Thirumangalam, Pudukottai and Dharmapuri) into one cluster and the other provenance, Sendurai, into a separate cluster. The genetic similarity matrix for 7 Acacia species showed that A. nilotica and A. dealbata were distantly related, while A. holosericea and A. ferruginea were very closely related. Cluster analysis grouped the species of Acacias into 3 major groups of which A. dealbata alone formed a separate group. The RAPD markers generated 36 provenance-specific markers and 162 species-specific markers that could have strong applications for species identification and tree breeding programs for A. leucophloea and for other Acacia species included in this study.
文摘Cotton occupies a pre-eminent place among cash crops as it guides the destiny of a large section of the farming community as well as that of a flourishing textile industry.As the yarn manufacturing industry has undergone a technological revolution,more emphasis is given to quality of the raw
文摘A field experiment was conducted at TamilNadu agricultural university, Coimbatore during rabi 2011 to study the effect of time transplanting on growth, yield attributes and resultant seed quality of davana. The experiment was laid out with five different dates of transplanting viz., October 15th, November 1st, November 15th, December 1st and December 15th with the spacing of 15 × 7.5 cm and 125:125:75 NPK kg/ha were adopted in a randomized block design with four replications. The results revealed that the seedlings transplanted at 15th November recorded the maximum number of branches/plant, seed yield/plant, seed yield/plot, resultant seed germination and vigour index.
基金supported by the Indian Council of Agricultural Research,New Delhi,India
文摘There are increasing concerns on the environmental impacts of intensive chemical agriculture. The effect of high agrochemical inputs used in intensive chemical farming was assessed on soil microbiological, molecular and biochemical properties in tropical Vertisols in India. Farm field sites under normal cultivation of arable crops using high inputs of fertilizers and pesticides in chili (Capsicum annum L., 5.0× dose for fertilizers and 1.5× dose for pesticides over normal inputs) and black gram (Vigna mungo L. Hepper, 2.2× dose for fertilizers and 2.3× dose for pesticides over normal inputs) were compared with adjacent sites using normal recommended doses. Organic carbon and basal respiration showed no response to high inputs of fertilizers and pesticides in soils of both crops. Labile carbon decreased by 10% in chili soils and increased by 24% in black gram soils under high input farming system. The proportion of soil labile carbon as a fraction of soil organic carbon was unaffected by high inputs. The labile carbon mineralization coefficient (qMLc) increased by 50.0% in chili soils, indicating that the soil microorganisms were under stress due to high agochemical inputs, whereas qMLc decreased by 36.4% in black gram soils. Copiotrophs increased due to high inputs in soils of both chili (63.1%) and black gram (47.1%). Oligotrophs increased by 10.8% in black gram soils but not in chili soils. The abundance of amoA gene reduced by 39.3% in chili soils due to high inputs and increased significantly by 110.8% in black gram soils. β-Glucosidase also increased by 27.2% and 325.0%, respectively. Acid phosphatase activity reduced by 29.2% due to high inputs in chili soils and increased by 105.0% in black gram soils. The use of high agrochemical inputs thus had adverse consequences on biological health in chili but not in black gram soils. In soils cultivated with black gram, the moderating effect of cultivating legumes and their beneficial effect on soil health were evident from the increase in soil labile carbon, lower qMLc, higher amoA gene and enzyme activities. Overall results showed that cultivation of legumes permits intensive chemical farming without deteriorating soil biological health.