Deriving reaction coordinates for the characterization of chemical reactions has long been a demanding task.In our previous work[ACS Cent.Sci.3,407(2017)],the reaction coordinate of a(retro-)Claisen rearrangement in a...Deriving reaction coordinates for the characterization of chemical reactions has long been a demanding task.In our previous work[ACS Cent.Sci.3,407(2017)],the reaction coordinate of a(retro-)Claisen rearrangement in aqueous solution optimized through a Bayesian measure,a linear combination of bond lengths formation and breakage,was judged to be optimal among all trails.Here,considering the nonlinearity of the transition state,we use isometric mapping and locally linear embedding to obtain one reaction coordinate which is composed of a few collective variables.With these methods,we find a more reasonable and powerful one-dimensional reaction coordinate,which can well describe the reaction progression.To explore the reaction mechanism,we analyze the contribution of intrinsic molecular properties and the solventsolute interactions to the nonlinear reaction coordinate.Furthermore,another coordinate is identified to characterize the heterogeneity of reaction mechanisms.展开更多
基金supported by the National Nature Science Foundation of China(No.21927901 and No.92053202 to Yi Qin Gao)Zhen Zhang is supported by the Education Department of Hebei Province(QN2018308)+1 种基金Post-doctoral Foundation Project of Tangshan Normal University(2018A03)the Nature Science Foundation of Hebei Province of China(E2019105073)。
文摘Deriving reaction coordinates for the characterization of chemical reactions has long been a demanding task.In our previous work[ACS Cent.Sci.3,407(2017)],the reaction coordinate of a(retro-)Claisen rearrangement in aqueous solution optimized through a Bayesian measure,a linear combination of bond lengths formation and breakage,was judged to be optimal among all trails.Here,considering the nonlinearity of the transition state,we use isometric mapping and locally linear embedding to obtain one reaction coordinate which is composed of a few collective variables.With these methods,we find a more reasonable and powerful one-dimensional reaction coordinate,which can well describe the reaction progression.To explore the reaction mechanism,we analyze the contribution of intrinsic molecular properties and the solventsolute interactions to the nonlinear reaction coordinate.Furthermore,another coordinate is identified to characterize the heterogeneity of reaction mechanisms.