In this paper, the microstructures and mechanical properties of underwater laser welds of Type 304 stainless steel were investigated. JISY308L type filler wire was used as filler wire during welding. A gas-shielding n...In this paper, the microstructures and mechanical properties of underwater laser welds of Type 304 stainless steel were investigated. JISY308L type filler wire was used as filler wire during welding. A gas-shielding nozzle was used to form a local dry cavity surrounding the welding zone. The main results are summarized as follows: (1) The shielding condition of the local dry cavity severely affects the oxygen content of the weld, the worst shielding condition leading to the oxygen content of 800×10-6, which largely increases the oxide inclusions and somewhat reduces the ferrite content. (2) The increase of oxygen content reduces the elongation rate and reduction of area in tensile test, but has no influence on the tensile strength. (3) In appropriate shielding condition, the mechanical properties of the underwater laser welds can be as same as that in the air.展开更多
基金supported by the Natural Science Foundation of Tsinghua University
文摘In this paper, the microstructures and mechanical properties of underwater laser welds of Type 304 stainless steel were investigated. JISY308L type filler wire was used as filler wire during welding. A gas-shielding nozzle was used to form a local dry cavity surrounding the welding zone. The main results are summarized as follows: (1) The shielding condition of the local dry cavity severely affects the oxygen content of the weld, the worst shielding condition leading to the oxygen content of 800×10-6, which largely increases the oxide inclusions and somewhat reduces the ferrite content. (2) The increase of oxygen content reduces the elongation rate and reduction of area in tensile test, but has no influence on the tensile strength. (3) In appropriate shielding condition, the mechanical properties of the underwater laser welds can be as same as that in the air.