Objective:The activity of enzymes participating in the systems of antioxidant protection was assayed in the peel and pulp of sunflower.The essential roles of proteases in food stimulate research to find other sources ...Objective:The activity of enzymes participating in the systems of antioxidant protection was assayed in the peel and pulp of sunflower.The essential roles of proteases in food stimulate research to find other sources of the enzyme especially from non-conventional sources.In the present work,we study several biochemical parameters in the pulp and peel of sunflower.Methods:Pulp and peel of sunflower was extracted,antioxidant enzymes and nonenzymatic antioxidant were measured.Alkaline protease was measured and purified from pulp in sunflower.Results:High carbohydrate concentration,beta-carotene,catalase and ascorbate peroxidase activities,free radical scavenging capacity and free flavonoid content were observed in the peel of sunflower.Whereas,MDA and ceruloplasmin activities were high in the pulp of sunflower.Conclusions:The present study concluded that peel in sunflower are strong radical scavengers and can be considered as good sources of natural antioxidants for medicinal and commercial uses.Further analysis showed that protease activity was a significantly high in the pulp compared to the peel.展开更多
In this paper, fatigue verification of Class 1 nuclear power piping according to ASME Boiler & Pressure Vessel Code, Section III, NB-3600, is addressed. Basic design requirements and relevant verification procedures ...In this paper, fatigue verification of Class 1 nuclear power piping according to ASME Boiler & Pressure Vessel Code, Section III, NB-3600, is addressed. Basic design requirements and relevant verification procedures using Design-By-Analysis are first reviewed in detail. Thereafter, a so-called simplified elastic-plastic discontinuity analysis for further verification when the basic requirements found unsatisfactory is examined and discussed. In addition, necessary computational procedures for evaluating alternating stress intensities and cumulative damage factors are studied in detail. The authors' emphasis is placed on alternative verification procedures, which do not violate the general design principles upon which the code is built, for further verification if unsatisfactory results are found in the simplified elastic-plastic analysis. An alternative which employs a non-linear finite element computation and a refined numerical approach for re-evaluating the cumulative damage factors is suggested. Using this alternative, unavoidable plastic strains can be correctly taken into account in a computationally affordable way, and the reliability of the verification will not be affected by uncertainties introduced in the simplified elastic-plastic analysis through the penalty factor Ke and other simplifications.展开更多
The authors assessed if wetlands can contribute to flood damage reduction in the Red River Basin, Minnesota, by providing reliable flood water storage. Hydrology and biodiversity in 28 natural and restored wetlands su...The authors assessed if wetlands can contribute to flood damage reduction in the Red River Basin, Minnesota, by providing reliable flood water storage. Hydrology and biodiversity in 28 natural and restored wetlands suggested uncontrolled natural wetlands provided the highest mean annual flood storage at 15 cm of runoff while single and 2-stage outlet controlled wetlands provided 3.0 and 8.1 cm of runoff control. Natural controlled wetlands, followed by 2-stage and single stage outlet controlled restorations provided 10.2, 6.6, and 2.2 cm of storage for early summer storm events. Two years of recorded water levels and a 20-year continuous meteorological record were used to model "temporary water level increases" in each wetland. Species diversity, hydrology, and watershed land use variables are inversely related where high quality and diverse wetlands had the lowest amplitude and frequency of water level increases, while low quality wetlands had the highest. Uncontrolled natural wetlands had the highest biological diversity and the lowest frequency and magnitude of temporary water levels increased. A significant biodiversity declines were measured where water level increases were greater than 2.7 meters. Strong multi-linear relationships between watershed land uses and watershed/wetland ratio explained wetland hydraulic performance and biodiversity relations (r2 ranging from 0.6-0.8). Non-native wetland plant diversity increased with greater water level dynamics.展开更多
Objective: To prove probable relations between serum E3 SUMO-protein ligase NSE2(NSMCE2) concentration, peroxynitrite related to oxidative stress in nephrolithiasis patients.Methods: A total of 60 patients with nephro...Objective: To prove probable relations between serum E3 SUMO-protein ligase NSE2(NSMCE2) concentration, peroxynitrite related to oxidative stress in nephrolithiasis patients.Methods: A total of 60 patients with nephrolithiasis and 50 healthy volunteers were involved in this study. Colorimetric method was used to detect blood urea, creatinine, uric acid, protein, albumin, total antioxidant status, total oxidant status, peroxynitrite, nitric oxide and oxidative stress index. Glutathione, NSMCE2 and superoxide dismutase were measured by ELISA.Results: A significant increase in level of peroxynitrite, total oxidant status, NSMCE2 and oxidative stress index in patients was observed, while total antioxidant status and glutathione were significantly decreased.Conclusions: The study concluded that serum NSMCE2 significantly correlated with peroxynitrite and oxidative stress in patients with nephrolithiasis.展开更多
Fatigue verification of Class 1 nuclear power piping according to ASME Boiler and Pressure Vessel Code, Section III, NB-3600, which is often discussed in connection to power uprate and life-extension of aging reactors...Fatigue verification of Class 1 nuclear power piping according to ASME Boiler and Pressure Vessel Code, Section III, NB-3600, which is often discussed in connection to power uprate and life-extension of aging reactors in recent years, is dealt with. Key parameters involved in the fatigue verification, e.g., the alternating stress intensity Salt, the penalty factor Ke and the cumulative damage factor U, and relevant computational procedures applicable for the assessment of low-cycle fatigue failure using strain-controlled data, are particularly addressed. A so-called simplified elastic-plastic discontinuity analysis for alternative verification when fatigue requirements found unsatisfactory, and the procedures provided in NB-3600 for evaluating the alternating stress intensity S,j,, are reviewed in detail. An in-depth discussion is given to alternative procedures suggested earlier by the authors using nonlinear finite element analyses, which uses a nonlinear finite element analysis for directly determining the alternating stress, thus eliminating uncertainties resulted from the use of the penalty factor Ke. Using this alternative, unavoidable plastic strains can be correctly taken into account in a computationally affordable way, and the reliability of the verification will not be affected by uncertainties introduced in the simplified elastic-plastic analysis.展开更多
Three-dimensional(3D)-printed porous Ti6Al4V implants have good mechanical properties and excellent biocompatibility.As such,these implants are widely used in orthopedics.Particles adhere between the sintered and nons...Three-dimensional(3D)-printed porous Ti6Al4V implants have good mechanical properties and excellent biocompatibility.As such,these implants are widely used in orthopedics.Particles adhere between the sintered and nonsintered interfaces of the porous samples during 3D printing.These excess particles can be cleaned by blowing the particles and via ultrasound,but the excess internal particles of complex structural parts are difficult to remove.During long-term cyclic loading,stress and strain can cause residual Ti6Al4V particles in the pores of the implant to shed.These detached Ti6Al4V particles are in extensive contact with osteoblasts and scattered around the implant.In this study,we examined the effects of different concentrations of Ti6Al4V particles on osteoblasts and bones.MC3T3-E1 cells were used to evaluate the effects of different concentrations of Ti6Al4V particles on cells after 72 h on the basis of the expression levels of genes,involving osteopontin,alkaline phosphatase,bone morphogenetic protein-2 and runt-related transcription factor-2.Microtubule-associated protein 1 light chain 3 was used to detect the autophagy of MC3T3-E1 with different concentrations of Ti6Al4V particles.The distal femoral defects of rats were examined to examine bone growth with different concentrations of Ti6Al4V particles.All rats were accepted by micro-CT and biochemical analyses after 12 weeks.The results indicated that 10 and 100μg/ml of Ti6Al4V particles may improve osteogenic differentiation.Micro-CT revealed that low concentrations of Ti6Al4V particles may improve the osteogenesis of the rats.However,the(cortical and trabecular)BMD of middle and high dose groups was no significant change compared with control group.In conclusion,low-dose residual particles do not inhibit osteoblast differentiation and do not decrease the bone mineral density of rats.展开更多
文摘Objective:The activity of enzymes participating in the systems of antioxidant protection was assayed in the peel and pulp of sunflower.The essential roles of proteases in food stimulate research to find other sources of the enzyme especially from non-conventional sources.In the present work,we study several biochemical parameters in the pulp and peel of sunflower.Methods:Pulp and peel of sunflower was extracted,antioxidant enzymes and nonenzymatic antioxidant were measured.Alkaline protease was measured and purified from pulp in sunflower.Results:High carbohydrate concentration,beta-carotene,catalase and ascorbate peroxidase activities,free radical scavenging capacity and free flavonoid content were observed in the peel of sunflower.Whereas,MDA and ceruloplasmin activities were high in the pulp of sunflower.Conclusions:The present study concluded that peel in sunflower are strong radical scavengers and can be considered as good sources of natural antioxidants for medicinal and commercial uses.Further analysis showed that protease activity was a significantly high in the pulp compared to the peel.
文摘In this paper, fatigue verification of Class 1 nuclear power piping according to ASME Boiler & Pressure Vessel Code, Section III, NB-3600, is addressed. Basic design requirements and relevant verification procedures using Design-By-Analysis are first reviewed in detail. Thereafter, a so-called simplified elastic-plastic discontinuity analysis for further verification when the basic requirements found unsatisfactory is examined and discussed. In addition, necessary computational procedures for evaluating alternating stress intensities and cumulative damage factors are studied in detail. The authors' emphasis is placed on alternative verification procedures, which do not violate the general design principles upon which the code is built, for further verification if unsatisfactory results are found in the simplified elastic-plastic analysis. An alternative which employs a non-linear finite element computation and a refined numerical approach for re-evaluating the cumulative damage factors is suggested. Using this alternative, unavoidable plastic strains can be correctly taken into account in a computationally affordable way, and the reliability of the verification will not be affected by uncertainties introduced in the simplified elastic-plastic analysis through the penalty factor Ke and other simplifications.
文摘The authors assessed if wetlands can contribute to flood damage reduction in the Red River Basin, Minnesota, by providing reliable flood water storage. Hydrology and biodiversity in 28 natural and restored wetlands suggested uncontrolled natural wetlands provided the highest mean annual flood storage at 15 cm of runoff while single and 2-stage outlet controlled wetlands provided 3.0 and 8.1 cm of runoff control. Natural controlled wetlands, followed by 2-stage and single stage outlet controlled restorations provided 10.2, 6.6, and 2.2 cm of storage for early summer storm events. Two years of recorded water levels and a 20-year continuous meteorological record were used to model "temporary water level increases" in each wetland. Species diversity, hydrology, and watershed land use variables are inversely related where high quality and diverse wetlands had the lowest amplitude and frequency of water level increases, while low quality wetlands had the highest. Uncontrolled natural wetlands had the highest biological diversity and the lowest frequency and magnitude of temporary water levels increased. A significant biodiversity declines were measured where water level increases were greater than 2.7 meters. Strong multi-linear relationships between watershed land uses and watershed/wetland ratio explained wetland hydraulic performance and biodiversity relations (r2 ranging from 0.6-0.8). Non-native wetland plant diversity increased with greater water level dynamics.
基金Supported by International Islamic University of Malaysia under the research management center Grant Scheme Project No.ⅡUM/504/5/29/1
文摘Objective: To prove probable relations between serum E3 SUMO-protein ligase NSE2(NSMCE2) concentration, peroxynitrite related to oxidative stress in nephrolithiasis patients.Methods: A total of 60 patients with nephrolithiasis and 50 healthy volunteers were involved in this study. Colorimetric method was used to detect blood urea, creatinine, uric acid, protein, albumin, total antioxidant status, total oxidant status, peroxynitrite, nitric oxide and oxidative stress index. Glutathione, NSMCE2 and superoxide dismutase were measured by ELISA.Results: A significant increase in level of peroxynitrite, total oxidant status, NSMCE2 and oxidative stress index in patients was observed, while total antioxidant status and glutathione were significantly decreased.Conclusions: The study concluded that serum NSMCE2 significantly correlated with peroxynitrite and oxidative stress in patients with nephrolithiasis.
文摘Fatigue verification of Class 1 nuclear power piping according to ASME Boiler and Pressure Vessel Code, Section III, NB-3600, which is often discussed in connection to power uprate and life-extension of aging reactors in recent years, is dealt with. Key parameters involved in the fatigue verification, e.g., the alternating stress intensity Salt, the penalty factor Ke and the cumulative damage factor U, and relevant computational procedures applicable for the assessment of low-cycle fatigue failure using strain-controlled data, are particularly addressed. A so-called simplified elastic-plastic discontinuity analysis for alternative verification when fatigue requirements found unsatisfactory, and the procedures provided in NB-3600 for evaluating the alternating stress intensity S,j,, are reviewed in detail. An in-depth discussion is given to alternative procedures suggested earlier by the authors using nonlinear finite element analyses, which uses a nonlinear finite element analysis for directly determining the alternating stress, thus eliminating uncertainties resulted from the use of the penalty factor Ke. Using this alternative, unavoidable plastic strains can be correctly taken into account in a computationally affordable way, and the reliability of the verification will not be affected by uncertainties introduced in the simplified elastic-plastic analysis.
基金funded by National Key R&D Program of China(No.2016YFB1101100)National Key R&D Program of China(No.2018YFB1107000)+2 种基金the National Natural Science Foundation of China(No.11902089)Fundamental Research Funds for Central Public Welfare Research Institutes(NO.118009001000160001)Supported by Sichuan Science and Technology Program(No.2018SZ0036).
文摘Three-dimensional(3D)-printed porous Ti6Al4V implants have good mechanical properties and excellent biocompatibility.As such,these implants are widely used in orthopedics.Particles adhere between the sintered and nonsintered interfaces of the porous samples during 3D printing.These excess particles can be cleaned by blowing the particles and via ultrasound,but the excess internal particles of complex structural parts are difficult to remove.During long-term cyclic loading,stress and strain can cause residual Ti6Al4V particles in the pores of the implant to shed.These detached Ti6Al4V particles are in extensive contact with osteoblasts and scattered around the implant.In this study,we examined the effects of different concentrations of Ti6Al4V particles on osteoblasts and bones.MC3T3-E1 cells were used to evaluate the effects of different concentrations of Ti6Al4V particles on cells after 72 h on the basis of the expression levels of genes,involving osteopontin,alkaline phosphatase,bone morphogenetic protein-2 and runt-related transcription factor-2.Microtubule-associated protein 1 light chain 3 was used to detect the autophagy of MC3T3-E1 with different concentrations of Ti6Al4V particles.The distal femoral defects of rats were examined to examine bone growth with different concentrations of Ti6Al4V particles.All rats were accepted by micro-CT and biochemical analyses after 12 weeks.The results indicated that 10 and 100μg/ml of Ti6Al4V particles may improve osteogenic differentiation.Micro-CT revealed that low concentrations of Ti6Al4V particles may improve the osteogenesis of the rats.However,the(cortical and trabecular)BMD of middle and high dose groups was no significant change compared with control group.In conclusion,low-dose residual particles do not inhibit osteoblast differentiation and do not decrease the bone mineral density of rats.