The pressure drop in a microchannel Fischer-Tropsch reactor was investigated by means of a fluid dynamics model developed by the authors. The developed model takes into account roughness of the microchannel wall induc...The pressure drop in a microchannel Fischer-Tropsch reactor was investigated by means of a fluid dynamics model developed by the authors. The developed model takes into account roughness of the microchannel wall induced by catalyst particle deposition on the surface of the microchannel. The presented simulation procedure takes into account the variation of the synthesis product composition and the variation of thermal properties of the liquid and gas phases along the microchannel length as functions of pressure, temperature, conversion rate and chain growth coefficient. Liquid and gaseous products down flow are modeled in the annular flow approximation. The obtained results are presented for two general types of microchannels, i.e. for rough-walled and for smooth-walled microchannels. It is shown that fluid dynamics in rough-walled and smooth-walled microchannels are dramatically different. It is established that a mean critical diameter can be introduced. The microchannels with diameter below the mean critical value can experience operation difficulty due to by high aerodynamic resistance or can even become completely flooded.展开更多
A non-equilibrium model of multicomponent melt solidification has been developed in which a Stefan problem with two boundaries is solved numerically, the boundaries being between the solid phase and the two-phase tran...A non-equilibrium model of multicomponent melt solidification has been developed in which a Stefan problem with two boundaries is solved numerically, the boundaries being between the solid phase and the two-phase transition zone and between the two-phase transition zone and the liquid phase. The two-phase zone is represented as a porous medium with variable porosity. The additional force resisting the melt flow due to porosity and introduced by analogy with Darcy's law is taken into account. Computer simulation has been performed of the experiment on Sn-20 wt.%Pb binary alloy solidification by the method of downward-directed crystallization along the gravity vector. The paper shows the results of a quasi two-dimensional benchmark experiment on horizontal (i.e., at the right angle to the gravity vector) directional solidification of a binary Sn-3 wt.%Pb alloy. The calculations were done using two crystallization models: the equilibrium model and the non-equilibrium one. It is shown that the non-equilibrium model gives a better description of the thermal field evolution and solute distribution caused by natural convection.展开更多
Direct growth of graphene on insulators is expected to yield significant improvements in performance of graphene-based electronic and spintronic devices. In this study, we successfully reveal the atomic arrangement an...Direct growth of graphene on insulators is expected to yield significant improvements in performance of graphene-based electronic and spintronic devices. In this study, we successfully reveal the atomic arrangement and electronic properties of a coherent heterostructure of single-layer graphene and α-Al2O3(0001). The analysis of the atomic arrangement of single-layer graphene on α-Al2O3(0001) revealed an apparentcontradiction. The in-plane analysis shows that single-layer graphene grows not in a single-crystalline epitaxial manner, but rather in polycrystalline form, with two strongly pronounced preferred orientations. This suggests relatively weak interfacial interactions are operative. However, we demonstrate that unusually strong physical interactions between graphene and α-Al2O3(0001) exist, as evidenced by the small separation between the graphene and the α-Al2O3(0001) surface. The interfacial interaction is shown to be dominated by the electrostatic forces involved in the graphene n-system and the unsaturated electrons of the topmost O layer of α-Al2O3(0001), rather than the van der Waals interactions. Such features causes graphene hole doping and enable the graphene to slide on the α-Al2O3(0001) surface with only a small energy barrier despite the strong interfacial interactions.展开更多
Immediately after the demonstration of the high-quality electronic properties in various two dimensional(2D)van der Waals(vdW)crystals fabricated with mechanical exfoliation,many methods have been reported to explore ...Immediately after the demonstration of the high-quality electronic properties in various two dimensional(2D)van der Waals(vdW)crystals fabricated with mechanical exfoliation,many methods have been reported to explore and control large scale fabrications.Comparing with recent advancements in fabricating 2D atomic layered crystals,large scale production of one dimensional(1D)nanowires with thickness approaching molecular or atomic level still remains stagnant.Here,we demonstrate the high yield production of a 1D vdW material,semiconducting Ta2Pd3Se8 nanowires,by means of liquid-phase exfoliation.The thinnest nanowire we have readily achieved is around 1 nm,corresponding to a bundle of one or two molecular ribbons.Transmission electron microscopy(TEM)and transport measurements reveal the as-fabricated Ta2Pd3Se8 nanowires exhibit unexpected high crystallinity and chemical stability.Our low-frequency Raman spectroscopy reveals clear evidence of the existing of weak inter-ribbon bindings.The fabricated nanowire transistors exhibit high switching performance and promising applications for photodetectors.展开更多
文摘The pressure drop in a microchannel Fischer-Tropsch reactor was investigated by means of a fluid dynamics model developed by the authors. The developed model takes into account roughness of the microchannel wall induced by catalyst particle deposition on the surface of the microchannel. The presented simulation procedure takes into account the variation of the synthesis product composition and the variation of thermal properties of the liquid and gas phases along the microchannel length as functions of pressure, temperature, conversion rate and chain growth coefficient. Liquid and gaseous products down flow are modeled in the annular flow approximation. The obtained results are presented for two general types of microchannels, i.e. for rough-walled and for smooth-walled microchannels. It is shown that fluid dynamics in rough-walled and smooth-walled microchannels are dramatically different. It is established that a mean critical diameter can be introduced. The microchannels with diameter below the mean critical value can experience operation difficulty due to by high aerodynamic resistance or can even become completely flooded.
文摘A non-equilibrium model of multicomponent melt solidification has been developed in which a Stefan problem with two boundaries is solved numerically, the boundaries being between the solid phase and the two-phase transition zone and between the two-phase transition zone and the liquid phase. The two-phase zone is represented as a porous medium with variable porosity. The additional force resisting the melt flow due to porosity and introduced by analogy with Darcy's law is taken into account. Computer simulation has been performed of the experiment on Sn-20 wt.%Pb binary alloy solidification by the method of downward-directed crystallization along the gravity vector. The paper shows the results of a quasi two-dimensional benchmark experiment on horizontal (i.e., at the right angle to the gravity vector) directional solidification of a binary Sn-3 wt.%Pb alloy. The calculations were done using two crystallization models: the equilibrium model and the non-equilibrium one. It is shown that the non-equilibrium model gives a better description of the thermal field evolution and solute distribution caused by natural convection.
基金We are grateful to the 'Chebishev' and 'Lomonosov' supercomputers of Moscow State University for providing the chance of using a cluster computer for quantum-chemical calculations. S.E. thanks Prof. H. Kondo (Keio University) and Prof. T. Shimada (Hirosaki University) for NIXSW measurements. This work was partly supported by Grants-in-Aid for Young Scientists B (Grant No. 22760033) from the Japan Society for the Promotion of Science. The present work has been performed under the approval of the Photon Factory Program Advisory Committee (PF PAC Nos. 2010G660 and 2012G741). P.V.A., P.B.S. and L.Y.A. acknowledge the support from the Russian Science Foundation (project No. 14-13-00139).
文摘Direct growth of graphene on insulators is expected to yield significant improvements in performance of graphene-based electronic and spintronic devices. In this study, we successfully reveal the atomic arrangement and electronic properties of a coherent heterostructure of single-layer graphene and α-Al2O3(0001). The analysis of the atomic arrangement of single-layer graphene on α-Al2O3(0001) revealed an apparentcontradiction. The in-plane analysis shows that single-layer graphene grows not in a single-crystalline epitaxial manner, but rather in polycrystalline form, with two strongly pronounced preferred orientations. This suggests relatively weak interfacial interactions are operative. However, we demonstrate that unusually strong physical interactions between graphene and α-Al2O3(0001) exist, as evidenced by the small separation between the graphene and the α-Al2O3(0001) surface. The interfacial interaction is shown to be dominated by the electrostatic forces involved in the graphene n-system and the unsaturated electrons of the topmost O layer of α-Al2O3(0001), rather than the van der Waals interactions. Such features causes graphene hole doping and enable the graphene to slide on the α-Al2O3(0001) surface with only a small energy barrier despite the strong interfacial interactions.
基金This work is supported by the United States Department of Energy under Grant DE-SC0014208by The National Science Foundation under Grant 1752997.We acknowledge the Coordinated Instrument Facility(CIF)of Tulane University for the support of various instruments.P.B.S.and L.Y.A.(theoretical calculations)were supported by the Russian Science Foundation(No.17-72-20223)+1 种基金We are grateful to the supercomputer cluster provided by the Materials Modelling and Development Laboratory at NUST“MISIS”(supported via the Grant from the Ministry of Education and Science of the Russian Federation No.14.Y26.31.0005)to the Joint Supercomputer Center of the Russian Academy of Sciences.
文摘Immediately after the demonstration of the high-quality electronic properties in various two dimensional(2D)van der Waals(vdW)crystals fabricated with mechanical exfoliation,many methods have been reported to explore and control large scale fabrications.Comparing with recent advancements in fabricating 2D atomic layered crystals,large scale production of one dimensional(1D)nanowires with thickness approaching molecular or atomic level still remains stagnant.Here,we demonstrate the high yield production of a 1D vdW material,semiconducting Ta2Pd3Se8 nanowires,by means of liquid-phase exfoliation.The thinnest nanowire we have readily achieved is around 1 nm,corresponding to a bundle of one or two molecular ribbons.Transmission electron microscopy(TEM)and transport measurements reveal the as-fabricated Ta2Pd3Se8 nanowires exhibit unexpected high crystallinity and chemical stability.Our low-frequency Raman spectroscopy reveals clear evidence of the existing of weak inter-ribbon bindings.The fabricated nanowire transistors exhibit high switching performance and promising applications for photodetectors.