Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding ...Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding through horizontal wells is commonly used for exploiting these reservoirs.However,challenges persist,such as significant uncertainty and complex operational procedures regarding adjustment effects during the exploitation.The USH reservoir of the Cretaceous D oilfield,Oman exemplifies typical porous carbonate reservoirs.It initially underwent depletion drive using vertical wells,followed by horizontal well waterflooding in the late stage.Currently,the oilfield is confronted with substantial developmental challenges,involving the understanding of residual oil distribution,effective water cut control,and sustaining oil production since it has entered the late development stage.Employing a microscopic visualization displacement system equipped with electrodes,this study elucidated the waterflooding mechanisms and residual oil distribution in the late-stage development of the USH reservoir.The results reveal that the reservoir's vertical stacking patterns act as the main factor affecting the horizontal well waterflooding efficacy.Distinct water flow channels emerge under varying reservoir stacking patterns,with post-waterflooding residual oil predominantly distributed at the reservoir's top and bottom.The oil recovery can be enhanced by adjusting the waterflooding's flow line and intensity.The findings of this study will provide theoretical insights of waterflooding mechanisms and injection-production adjustments for exploiting other porous carbonate reservoirs in the Middle East through horizontal wells.展开更多
Based on conventional radiosonde data, surface encrypted observation data and so forth, the diagnostic analysis of a heavy rainstorm in the central and east of Henan Province on June 29, 2006 was carried out from the ...Based on conventional radiosonde data, surface encrypted observation data and so forth, the diagnostic analysis of a heavy rainstorm in the central and east of Henan Province on June 29, 2006 was carried out from the aspects of its large-scale background, environmental field and physical characteristics. The results showed that under the effect of a favorable large-scale environmental field, the rainstorm was caused by a mesoscale system. The high-east and low-west circulation pattern, the eastward movement of high-level low trough, low-level shear lines and strengthening of low-level jet streams directly resulted in the occurrence of the heavy rainstorm.展开更多
Time series of MODIS land surface temperature(Ts) and normalized difference vegetation index(NDVI) products,combined with digital elevation model(DEM) and meteorological data from 2001 to 2012,were used to map the spa...Time series of MODIS land surface temperature(Ts) and normalized difference vegetation index(NDVI) products,combined with digital elevation model(DEM) and meteorological data from 2001 to 2012,were used to map the spatial distribution of monthly mean air temperature over the Northern Tibetan Plateau(NTP). A time series analysis and a regression analysis of monthly mean land surface temperature(Ts) and air temperature(Ta) were conducted using ordinary linear regression(OLR) and geographical weighted regression(GWR). The analyses showed that GWR,which considers MODIS Ts,NDVI and elevation as independent variables,yielded much better results [RAdj2> 0.79; root-mean-square error(RMSE) =0.51℃–1.12℃] associated with estimating Tacompared to those from OLR(RAdj2= 0.40-0.78; RMSE = 1.60℃–4.38℃).In addition,some characteristics of the spatial distribution of monthly Taand the difference between the surface and air temperature(Td) are as follows. According to the analysis of the 0℃ and 10℃ isothermals,Tavalues over the NTP at elevations of 4000–5000 m were greater than 10℃ in the summer(from May to October),and Tavalues at an elevation of3200 m dropped below 0℃ in the winter(from November to April). Taexhibited an increasing trend from northwest to southeast. Except in the southeastern area of the NTP,T d values in other areas were all larger than 0℃ in the winter.展开更多
The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power ...The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power and pulse width influence on SNR is studied on the theoretical derivation and analysis,and the results show that the higher the peak power can realize the greater the signal-to-noise ratio of coherent Doppler wind lidar.But when the peak power is too large,the laser pulse may appear nonlinear phenomenon,which cause the damage of the laser.So,the peak power must be less than the stimulated brillouin scattering power threshold.Increasing the pulse width can make the laser device to output more energy,but it will also make the spatial resolution lower,and the influence of turbulence on SNR will be greater.After a series of simulation analyses,it can be concluded that when the peak power is 650W and the pulse width is 340ns,the SNR of the system can be maximized.In addition,the coherent Doppler wind lidar system is set up to carry out corresponding experimental verification.The experimental results are consistent with the theoretical analysis and simulation,which verifies the correctness of the theoretical analysis and simulation results.It provides theoretical basis and practical ex-perience for the design of laser transmitting pulse in coherent Doppler wind lidar system.展开更多
Agronomic management practices that maximize monoculture switchgrass (Panicum virgatum L.) yield are generally well understood;however, little is known about corresponding effects of differing switchgrass management p...Agronomic management practices that maximize monoculture switchgrass (Panicum virgatum L.) yield are generally well understood;however, little is known about corresponding effects of differing switchgrass management practices on near-surface soil properties and processes. The objective of the study was to evaluate the effects of cultivar (“Alamo” and “Cave-in-Rock”), harvest frequency (1- and 2-cuts per year), fertilizer source (poultry litter and commercial fertilizer), and irrigation management (irrigated and non-irrigated) on near-surface soil properties and surface infiltration in a Leadvale silt loam (fine-silty, siliceous, semiactive, thermic, Typic Fragiudult) after four years (2008 through 2011) of consistent management in west-central Arkansas. Irrigating switchgrass increased (P 0.05) and averaged 0.79 mm?min?1. Results from this study indicate that management decisions to maximize switchgrass biomass production affect soil properties over relatively short periods of time, and further research is needed to develop local best management practices to maximize yield while maintaining or improving soil quality.展开更多
Shuibuya control basin in upper reaches of Qingjiang River,Hubei Province was taken as the case. By combining grouping Z-I relation with ground meteorological rainfall station,rainfall estimation by radar was calibrat...Shuibuya control basin in upper reaches of Qingjiang River,Hubei Province was taken as the case. By combining grouping Z-I relation with ground meteorological rainfall station,rainfall estimation by radar was calibrated,and actual average surface rainfall in the basin was calculated.By combining genetic algorithm with neural network,the corrected AREM rainfall forecast model was established,to improve rainfall forecast accuracy by AREM. Finally,AREM rainfall forecast models before and after correction were input in Xin'an River hydrologic model for flood forecast test. The results showed that the corrected AREM rainfall forecast model could significantly improve forecast accuracy of accumulative rainfall,and decrease range of average relative error was more than 60%. Hourly rainfall forecast accuracy was improved somewhat,but there was certain difference from actual situation. Average deterministic coefficient of AREM flood forest test before and after correction was improved from -32. 60% to 64. 38%,and relative error of flood peak decreased from 39. 00% to 25. 04%. The improved effect of deterministic coefficient was better than relative error of flood peak,and whole flood forecast accuracy was improved somewhat.展开更多
The accumulation of thermal time usually represents the local heat resources to drive crop growth.Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data colle...The accumulation of thermal time usually represents the local heat resources to drive crop growth.Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity.To solve the critical problems of estimating air temperature(T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days(GDDs) calculation from remotely sensed data,a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer(MODIS) data was proposed.This is a preliminary study to calculate heat accumulation,expressed in accumulative growing degree days(AGDDs) above 10 ℃,from reconstructed T a based on MODIS land surface temperature(LST) data.The verification results of maximum T a,minimum T a,GDD,and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels.Overall,MODIS-derived AGDD was slightly underestimated with almost 10% relative error.However,the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper.Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring,agricultural climatic regionalization,and agro-meteorological disaster detection at the regional scale.展开更多
A rain-type adaptive pyramid Kanade-Lucas-Tomasi(A-PKLT)optical flow method for radar echo extrapolation is proposed.This method introduces a rain-type classification algorithm that can classify radar echoes into six ...A rain-type adaptive pyramid Kanade-Lucas-Tomasi(A-PKLT)optical flow method for radar echo extrapolation is proposed.This method introduces a rain-type classification algorithm that can classify radar echoes into six types:convective,stratiform,surrounding convective,isolated convective core,isolated convective fringe,and weak echoes.Then,new schemes are designed to optimize specific parameters of the PKLT optical flow based on the rain type of the echo.At the same time,the gradients of radar reflectivity in the fringe positions corresponding to all types of rain echoes are increased.As a result,corner points that are characteristic points used for PKLT optical flow tracking in the surrounding area will be increased.Therefore,more motion vectors are purposefully obtained in the whole radar echo area.This helps to describe the motion characteristics of the precipitation more precisely.Then,the motion vectors corresponding to each type of rain echo are merged,and a denser motion vector field is generated by an interpolation algorithm on the basis of merged motion vectors.Finally,the dense motion vectors are used to extrapolate rain echoes into 0-60-min nowcasts by a semi-Lagrangian scheme.Compared with other nowcasting methods for four landfalling typhoons in or near Shanghai,the new optical flow method is found to be more accurate than the traditional cross-correlation and optical flow methods,particularly showing a clear improvement in the nowcasting of convective echoes on the spiral rainbands of typhoons.展开更多
Fas-associated factor 1 (FAF1) is a scaffolding protein that plays multiple functions, and dysregulation of FAF1 is associated withmany types of diseases such as cancers. FAF1 contains multiple ubiquitin-related domai...Fas-associated factor 1 (FAF1) is a scaffolding protein that plays multiple functions, and dysregulation of FAF1 is associated withmany types of diseases such as cancers. FAF1 contains multiple ubiquitin-related domains (UBA, UBL1, UBL2, UAS, and UBX), eachdomain interacting with a specific partner. In particular, the interaction of UBL1 with heat shock protein 70 (Hsp70) is associatedwith tumor formation, although the molecular understanding remains unknown. In this study, the structural analysis revealed thatHis160 of FAF1 is important for its interaction with Hsp70. The association of Hsp70 with FAF1 is required for the interaction withIQGAP1. FAF1 negatively regulates RhoA activation by FAF1–Hsp70 complex formation, which then interacts with IQGAP1. Thesesteps play a key role in maintaining the stability of cell-to-cell junction. We conclude that FAF1 plays a critical role in the structureand function of adherens junction during tissue homeostasis and morphogenesis by suppressing RhoA activation, which induces theactivation of Rho-associated protein kinase, phosphorylation of myosin light chain, formation of actin stress fiber, and disruptionof adherens junction. In addition, depletion of FAF1 increased collective invasion in a 3D spheroid cell culture. These results provideinsightinto how the FAF1–Hsp70 complex acts as a novelregulator ofthe adherens junction integrity. The complex can be a potentialtherapeutic target to inhibit tumorigenesis and metastasis.展开更多
基金funded by a Major Science and Technology Project of China National Petroleum Corporation(CNPC)entitled Research on Key Technologies for Efficient Production of Overseas Large Carbonate Reservoir”(2023ZZ19-08).
文摘Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding through horizontal wells is commonly used for exploiting these reservoirs.However,challenges persist,such as significant uncertainty and complex operational procedures regarding adjustment effects during the exploitation.The USH reservoir of the Cretaceous D oilfield,Oman exemplifies typical porous carbonate reservoirs.It initially underwent depletion drive using vertical wells,followed by horizontal well waterflooding in the late stage.Currently,the oilfield is confronted with substantial developmental challenges,involving the understanding of residual oil distribution,effective water cut control,and sustaining oil production since it has entered the late development stage.Employing a microscopic visualization displacement system equipped with electrodes,this study elucidated the waterflooding mechanisms and residual oil distribution in the late-stage development of the USH reservoir.The results reveal that the reservoir's vertical stacking patterns act as the main factor affecting the horizontal well waterflooding efficacy.Distinct water flow channels emerge under varying reservoir stacking patterns,with post-waterflooding residual oil predominantly distributed at the reservoir's top and bottom.The oil recovery can be enhanced by adjusting the waterflooding's flow line and intensity.The findings of this study will provide theoretical insights of waterflooding mechanisms and injection-production adjustments for exploiting other porous carbonate reservoirs in the Middle East through horizontal wells.
文摘Based on conventional radiosonde data, surface encrypted observation data and so forth, the diagnostic analysis of a heavy rainstorm in the central and east of Henan Province on June 29, 2006 was carried out from the aspects of its large-scale background, environmental field and physical characteristics. The results showed that under the effect of a favorable large-scale environmental field, the rainstorm was caused by a mesoscale system. The high-east and low-west circulation pattern, the eastward movement of high-level low trough, low-level shear lines and strengthening of low-level jet streams directly resulted in the occurrence of the heavy rainstorm.
基金funded by the Chinese Academy of Science“Hundred Talents”program (Dr.Weiqiang MA)the National Natural Science Foundation of China (Grant Nos.41375009,91337212,41275010 and 41522501 and 41661144043)+3 种基金Study on long term changes of surface heat source in northern Tibetan Plateau and its thermal effect on the plateau monsoon system (Dr.Zeyong HUGrant No.91537101)the China Meteorological Administration Special Fund for Scientific Research in the Public Interest (Grant No.GYHY201406001)the EU-FP7 project “CORECLIMAX” (Grant No.313085)
文摘Time series of MODIS land surface temperature(Ts) and normalized difference vegetation index(NDVI) products,combined with digital elevation model(DEM) and meteorological data from 2001 to 2012,were used to map the spatial distribution of monthly mean air temperature over the Northern Tibetan Plateau(NTP). A time series analysis and a regression analysis of monthly mean land surface temperature(Ts) and air temperature(Ta) were conducted using ordinary linear regression(OLR) and geographical weighted regression(GWR). The analyses showed that GWR,which considers MODIS Ts,NDVI and elevation as independent variables,yielded much better results [RAdj2> 0.79; root-mean-square error(RMSE) =0.51℃–1.12℃] associated with estimating Tacompared to those from OLR(RAdj2= 0.40-0.78; RMSE = 1.60℃–4.38℃).In addition,some characteristics of the spatial distribution of monthly Taand the difference between the surface and air temperature(Td) are as follows. According to the analysis of the 0℃ and 10℃ isothermals,Tavalues over the NTP at elevations of 4000–5000 m were greater than 10℃ in the summer(from May to October),and Tavalues at an elevation of3200 m dropped below 0℃ in the winter(from November to April). Taexhibited an increasing trend from northwest to southeast. Except in the southeastern area of the NTP,T d values in other areas were all larger than 0℃ in the winter.
文摘The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power and pulse width influence on SNR is studied on the theoretical derivation and analysis,and the results show that the higher the peak power can realize the greater the signal-to-noise ratio of coherent Doppler wind lidar.But when the peak power is too large,the laser pulse may appear nonlinear phenomenon,which cause the damage of the laser.So,the peak power must be less than the stimulated brillouin scattering power threshold.Increasing the pulse width can make the laser device to output more energy,but it will also make the spatial resolution lower,and the influence of turbulence on SNR will be greater.After a series of simulation analyses,it can be concluded that when the peak power is 650W and the pulse width is 340ns,the SNR of the system can be maximized.In addition,the coherent Doppler wind lidar system is set up to carry out corresponding experimental verification.The experimental results are consistent with the theoretical analysis and simulation,which verifies the correctness of the theoretical analysis and simulation results.It provides theoretical basis and practical ex-perience for the design of laser transmitting pulse in coherent Doppler wind lidar system.
文摘Agronomic management practices that maximize monoculture switchgrass (Panicum virgatum L.) yield are generally well understood;however, little is known about corresponding effects of differing switchgrass management practices on near-surface soil properties and processes. The objective of the study was to evaluate the effects of cultivar (“Alamo” and “Cave-in-Rock”), harvest frequency (1- and 2-cuts per year), fertilizer source (poultry litter and commercial fertilizer), and irrigation management (irrigated and non-irrigated) on near-surface soil properties and surface infiltration in a Leadvale silt loam (fine-silty, siliceous, semiactive, thermic, Typic Fragiudult) after four years (2008 through 2011) of consistent management in west-central Arkansas. Irrigating switchgrass increased (P 0.05) and averaged 0.79 mm?min?1. Results from this study indicate that management decisions to maximize switchgrass biomass production affect soil properties over relatively short periods of time, and further research is needed to develop local best management practices to maximize yield while maintaining or improving soil quality.
基金Supported by the Science and Technology Development Key Fund of Hubei Provincial Meteorological Bureau(2015Z02)
文摘Shuibuya control basin in upper reaches of Qingjiang River,Hubei Province was taken as the case. By combining grouping Z-I relation with ground meteorological rainfall station,rainfall estimation by radar was calibrated,and actual average surface rainfall in the basin was calculated.By combining genetic algorithm with neural network,the corrected AREM rainfall forecast model was established,to improve rainfall forecast accuracy by AREM. Finally,AREM rainfall forecast models before and after correction were input in Xin'an River hydrologic model for flood forecast test. The results showed that the corrected AREM rainfall forecast model could significantly improve forecast accuracy of accumulative rainfall,and decrease range of average relative error was more than 60%. Hourly rainfall forecast accuracy was improved somewhat,but there was certain difference from actual situation. Average deterministic coefficient of AREM flood forest test before and after correction was improved from -32. 60% to 64. 38%,and relative error of flood peak decreased from 39. 00% to 25. 04%. The improved effect of deterministic coefficient was better than relative error of flood peak,and whole flood forecast accuracy was improved somewhat.
基金Project supported by the National Key Technology R&D Program of China (No. 2012BAH29B02)the PhD Programs Foundation of Ministry of Education of China (No. 200100101110035)
文摘The accumulation of thermal time usually represents the local heat resources to drive crop growth.Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity.To solve the critical problems of estimating air temperature(T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days(GDDs) calculation from remotely sensed data,a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer(MODIS) data was proposed.This is a preliminary study to calculate heat accumulation,expressed in accumulative growing degree days(AGDDs) above 10 ℃,from reconstructed T a based on MODIS land surface temperature(LST) data.The verification results of maximum T a,minimum T a,GDD,and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels.Overall,MODIS-derived AGDD was slightly underestimated with almost 10% relative error.However,the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper.Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring,agricultural climatic regionalization,and agro-meteorological disaster detection at the regional scale.
基金This work was supported by National Key Research and Development Program of China(No.2018YFC1507601)National Natural Science Foundation of China(Grant No.41775049)Scientific Research Project of Shanghai Science and Technology Commission(No.18DZ12000403),and Severe Convection S&T Innovation Team of Shanghai Meteorological Service.
文摘A rain-type adaptive pyramid Kanade-Lucas-Tomasi(A-PKLT)optical flow method for radar echo extrapolation is proposed.This method introduces a rain-type classification algorithm that can classify radar echoes into six types:convective,stratiform,surrounding convective,isolated convective core,isolated convective fringe,and weak echoes.Then,new schemes are designed to optimize specific parameters of the PKLT optical flow based on the rain type of the echo.At the same time,the gradients of radar reflectivity in the fringe positions corresponding to all types of rain echoes are increased.As a result,corner points that are characteristic points used for PKLT optical flow tracking in the surrounding area will be increased.Therefore,more motion vectors are purposefully obtained in the whole radar echo area.This helps to describe the motion characteristics of the precipitation more precisely.Then,the motion vectors corresponding to each type of rain echo are merged,and a denser motion vector field is generated by an interpolation algorithm on the basis of merged motion vectors.Finally,the dense motion vectors are used to extrapolate rain echoes into 0-60-min nowcasts by a semi-Lagrangian scheme.Compared with other nowcasting methods for four landfalling typhoons in or near Shanghai,the new optical flow method is found to be more accurate than the traditional cross-correlation and optical flow methods,particularly showing a clear improvement in the nowcasting of convective echoes on the spiral rainbands of typhoons.
基金Thisworkwas supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(2017R1A2B3007224 and 2020R1A4A4079494 to E.E.K.2020R1F1A1055369 to K.-J.L.2019R1A2C2004052 to E.J.S.).S.S.and I.-K.S.were supported by Brain Korea 21 Plus(BK21 Plus)Project.
文摘Fas-associated factor 1 (FAF1) is a scaffolding protein that plays multiple functions, and dysregulation of FAF1 is associated withmany types of diseases such as cancers. FAF1 contains multiple ubiquitin-related domains (UBA, UBL1, UBL2, UAS, and UBX), eachdomain interacting with a specific partner. In particular, the interaction of UBL1 with heat shock protein 70 (Hsp70) is associatedwith tumor formation, although the molecular understanding remains unknown. In this study, the structural analysis revealed thatHis160 of FAF1 is important for its interaction with Hsp70. The association of Hsp70 with FAF1 is required for the interaction withIQGAP1. FAF1 negatively regulates RhoA activation by FAF1–Hsp70 complex formation, which then interacts with IQGAP1. Thesesteps play a key role in maintaining the stability of cell-to-cell junction. We conclude that FAF1 plays a critical role in the structureand function of adherens junction during tissue homeostasis and morphogenesis by suppressing RhoA activation, which induces theactivation of Rho-associated protein kinase, phosphorylation of myosin light chain, formation of actin stress fiber, and disruptionof adherens junction. In addition, depletion of FAF1 increased collective invasion in a 3D spheroid cell culture. These results provideinsightinto how the FAF1–Hsp70 complex acts as a novelregulator ofthe adherens junction integrity. The complex can be a potentialtherapeutic target to inhibit tumorigenesis and metastasis.