Research was undertaken to define the concept of a coach-based braking energy recoupment, storage and regeneration system to augment the acceleration of regional commuter trains hauled by diesel locomotives. Functiona...Research was undertaken to define the concept of a coach-based braking energy recoupment, storage and regeneration system to augment the acceleration of regional commuter trains hauled by diesel locomotives. Functional specifications were developed having the goal of increasing by 25% the acceleration rate of a train consisting of 10 bi-level coaches hauled by a 3,000 hp diesel locomotive, typical of the rolling stock now in commuter services in Canada and the USA. Examining three alternate hybrid system technologies for train retardation based, respectively, on hydrostatic, battery and ultracapacitor energy storage. The ultracapacitor hybrid system appeared the most promising due to the capability ofultracapacitors to repeatedly and rapidly accept large energy charges without degradation, temperature insensitive and flexible in the placement of modules in the limited space available. Analyses of train operation simulations showed that in addition to augmenting acceleration and reducing trip time, braking energy recoupment reduced fuel consumption and concomitant diesel emissions.展开更多
文摘Research was undertaken to define the concept of a coach-based braking energy recoupment, storage and regeneration system to augment the acceleration of regional commuter trains hauled by diesel locomotives. Functional specifications were developed having the goal of increasing by 25% the acceleration rate of a train consisting of 10 bi-level coaches hauled by a 3,000 hp diesel locomotive, typical of the rolling stock now in commuter services in Canada and the USA. Examining three alternate hybrid system technologies for train retardation based, respectively, on hydrostatic, battery and ultracapacitor energy storage. The ultracapacitor hybrid system appeared the most promising due to the capability ofultracapacitors to repeatedly and rapidly accept large energy charges without degradation, temperature insensitive and flexible in the placement of modules in the limited space available. Analyses of train operation simulations showed that in addition to augmenting acceleration and reducing trip time, braking energy recoupment reduced fuel consumption and concomitant diesel emissions.