期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mesenchymal Stromal Cells and Their Uses in Bio-Regenerative Therapies for Bone and Cartilage: A Review
1
作者 Nathan Smernoff 《Open Journal of Regenerative Medicine》 2024年第1期1-19,共19页
Mesenchymal stromal cells (MSCs) are a top candidate for new clinical treatments in the repair of bone and cartilage. In several clinical trials, they have shown reliable, effective, and safe management of inflammatio... Mesenchymal stromal cells (MSCs) are a top candidate for new clinical treatments in the repair of bone and cartilage. In several clinical trials, they have shown reliable, effective, and safe management of inflammation, pain, and the regenerative capabilities of resident tissues. MSCs are likely derived from pericytes. They modulate the environment they are placed in by secreting immunomodulatory and signaling molecules to reduce inflammation and direct resident cells to create new tissues. They are easily isolated from several different adult tissues, and inexpensive to grow in a lab. However, a mistake made in the initial classification of MSCs as stem cells has created deeply engrained misconceptions that are still evident today. MSCs are not stem cells, despite a large fraction of research and therapies using the name “mesenchymal stem cells”. This mistake creates false narratives attributing the observed positive outcomes of MSC treatments to stem cell characteristics, which has led to distrust in MSC research. Despite inconsistencies in their classification, MSCs demonstrate consistent positive effects in numerous animal studies and human clinical trials for non-unions and osteoarthritis. With an aging population, regenerative techniques are very promising for novel therapies. To produce trusted and safe new treatments using MSCs, it is essential for the International Society for Cellular Therapies to re-establish common ground in the identity, mechanism of action, and isolation techniques of these cells. 展开更多
关键词 Mesenchymal Stromal Cells OSTEOARTHRITIS Non-Unions
下载PDF
Neurobehavioral Biomarkers of Aging: Influence of Genotype and Dietary Restriction
2
作者 MICHAEL J.FORSTER HARBANS LAL 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1991年第1期144-165,共22页
Because of the importance of central nervous system (CNS) functions to productive capacity and quality of life, biomarkers of these functions will play a key role in evaluating the success of interventions targeting a... Because of the importance of central nervous system (CNS) functions to productive capacity and quality of life, biomarkers of these functions will play a key role in evaluating the success of interventions targeting aging processes. The CNS biomarkers may also be useful for predicting aging in other systems and in the organism as a whole. Age-related behavioral changes, the products of CNS aging, have content and predictive validity with respect to human functional capacities and may, therefore, represent important 'neurobehavioral' markers of functional aging. This article presents a discussion of some behavioral paradigms which are currently being considered as neurobehavioral biomarkers of aging in mice and the experimental approaches being employed in the assessment of their validity. Studies conducted in the authors' laboratory using dietary restriction and genetic comparisons to evaluate the validity of neurobehavioral biomarkers have revealed several methodological concerns, and hypothetical and empirical examples of these pitfalls are described and discussed. In spite of those concerns, it is concluded that approaches to validity using genetic comparisons and dietary restriction can be successfully implemented and should ultimately lead to identification of valid and useful neurobehavioral biomarkers of aging. 展开更多
关键词 Neurobehavioral Biomarkers of Aging
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部