This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CF...This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CFD)simulation and their performance in case study.A full-scale experiment is performed in an environment chamber,and the measured air velocity and temperature fields are compared with the simulation results by using four ATD models.The velocity and temperature fields are measured by an omni-directional thermo-anemometer system.It demonstrates that the basic model and the box model are not applicable to complicated air terminal devices.At the occupant area,the relative errors between simulated and measured air velocities are less than 20% based on the N-point momentum model and the jet main region specification model.Around the ATD zone,the relative error between the numerical and measured air velocity based on the jet main region specification model is less than 15%.The jet main region specification model is proved to be an applicable approach and a more accurate way to study the airflow pattern around the ATD with complicated geometry.展开更多
文摘This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CFD)simulation and their performance in case study.A full-scale experiment is performed in an environment chamber,and the measured air velocity and temperature fields are compared with the simulation results by using four ATD models.The velocity and temperature fields are measured by an omni-directional thermo-anemometer system.It demonstrates that the basic model and the box model are not applicable to complicated air terminal devices.At the occupant area,the relative errors between simulated and measured air velocities are less than 20% based on the N-point momentum model and the jet main region specification model.Around the ATD zone,the relative error between the numerical and measured air velocity based on the jet main region specification model is less than 15%.The jet main region specification model is proved to be an applicable approach and a more accurate way to study the airflow pattern around the ATD with complicated geometry.