The similarity between classical and quantum physics is large enough to make an investigation of quantization methods a worthwhile endeavour. As history has shown, Dirac's canonical quantization method works reaso...The similarity between classical and quantum physics is large enough to make an investigation of quantization methods a worthwhile endeavour. As history has shown, Dirac's canonical quantization method works reasonably well in the case of conventional quantum mechanics over R<sup>n</sup> but it may fail in non-trivial phase spaces and also suffer from ordering problems. Affine quantization is an alternative method, similar to the canonical quantization, that may offer a positive result in situations for which canonical quantization fails. In this paper we revisit the affine quantization method on the half-line. We formulate and solve some simple models, the free particle and the harmonic oscillator.展开更多
Statistical behavior of a classical φ4 Hamiltonian lattice is investigated from microscopic dynamics. Thelargest Lyapunov exponent and entropies are considered for manifesting chaos and equipartition behaviors of the...Statistical behavior of a classical φ4 Hamiltonian lattice is investigated from microscopic dynamics. Thelargest Lyapunov exponent and entropies are considered for manifesting chaos and equipartition behaviors of the system.It is found, for the first time, that for any large while finite system size there exist two critical couplings for the transitionsto equipartitions, and the scaling behaviors of these lower and upper critical couplings vs. the system size are numericallyobtained.展开更多
In this study,Mn_(3)O_(4) spherical particles(SPs)were synthesized by the sol-gel process,after which they were thermally annealed at 400℃,and comprehensively characterized.X-ray Diffraction(XRD)revealed that Mn_(3)O...In this study,Mn_(3)O_(4) spherical particles(SPs)were synthesized by the sol-gel process,after which they were thermally annealed at 400℃,and comprehensively characterized.X-ray Diffraction(XRD)revealed that Mn_(3)O_(4) exhibited a tetragonal spinel structure,and Fourier transformed infrared(FTIR)spectroscopy identified surfaceadsorbed functional groups.Scanning electron microscopy(SEM)and the specific surface area analyses by Brunauer−Emmett−Teller(BET)revealed a porous,homogeneous surface composed of strongly agglomerated spherical grains with an estimated average particle size of∼35 nm,which corresponded to a large specific surface area of∼81.5 m^(2)/g.X-ray photoelectron spectroscopy(XPS)analysis indicated that Mn_(3)O_(4) was composed of metallic cations(Mn^(4+),Mn^(3)+,and Mn^(2+))and oxygen species(O_(2)−,OH−and CO_(3)^(2−)).The optical bandgap energy is∼2.55 eV.Assessment of the catalytic performance of the Mn_(3)O_(4) SPs indicated T90 conversion of CH4 to CO_(2) and H_(2)O at 398℃ for gas hourly space velocity(GHSV)of 72000 mL^(3) g^(−1) h^(−1).This observed performance can be attributed to the cooperative effects of the smallest spherical grain size with a mesoporous structure,which is responsible for the larger specific surface area and available surface-active oxygenated species.The cooperative effect of the good reducibility,higher ratio of active species(OLat/OAds),and results of density functional theory(DFT)calculations suggested that the total oxidation of CH_(4) over the mesoporous Mn_(3)O_(4) SPs might take place via a two-term process in which both the Langmuir−Hinshelwood and Mars−van Krevelen mechanisms are cooperatively involved.展开更多
文摘The similarity between classical and quantum physics is large enough to make an investigation of quantization methods a worthwhile endeavour. As history has shown, Dirac's canonical quantization method works reasonably well in the case of conventional quantum mechanics over R<sup>n</sup> but it may fail in non-trivial phase spaces and also suffer from ordering problems. Affine quantization is an alternative method, similar to the canonical quantization, that may offer a positive result in situations for which canonical quantization fails. In this paper we revisit the affine quantization method on the half-line. We formulate and solve some simple models, the free particle and the harmonic oscillator.
文摘Statistical behavior of a classical φ4 Hamiltonian lattice is investigated from microscopic dynamics. Thelargest Lyapunov exponent and entropies are considered for manifesting chaos and equipartition behaviors of the system.It is found, for the first time, that for any large while finite system size there exist two critical couplings for the transitionsto equipartitions, and the scaling behaviors of these lower and upper critical couplings vs. the system size are numericallyobtained.
基金S.K.acknowledges computing time granted by the Center for Computational Sciences and Simulation(CCSS)the Universität DuisburgEssen and provided on the supercomputer magnitude(DFG grants INST 20876/209-1 FUGG,INST 20876/243-1 FUGG)the Zentrum für Informations-und Mediendienste(ZIM).S.K.gratefully acknowledges the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)for funding 388390466-TRR 247.
文摘In this study,Mn_(3)O_(4) spherical particles(SPs)were synthesized by the sol-gel process,after which they were thermally annealed at 400℃,and comprehensively characterized.X-ray Diffraction(XRD)revealed that Mn_(3)O_(4) exhibited a tetragonal spinel structure,and Fourier transformed infrared(FTIR)spectroscopy identified surfaceadsorbed functional groups.Scanning electron microscopy(SEM)and the specific surface area analyses by Brunauer−Emmett−Teller(BET)revealed a porous,homogeneous surface composed of strongly agglomerated spherical grains with an estimated average particle size of∼35 nm,which corresponded to a large specific surface area of∼81.5 m^(2)/g.X-ray photoelectron spectroscopy(XPS)analysis indicated that Mn_(3)O_(4) was composed of metallic cations(Mn^(4+),Mn^(3)+,and Mn^(2+))and oxygen species(O_(2)−,OH−and CO_(3)^(2−)).The optical bandgap energy is∼2.55 eV.Assessment of the catalytic performance of the Mn_(3)O_(4) SPs indicated T90 conversion of CH4 to CO_(2) and H_(2)O at 398℃ for gas hourly space velocity(GHSV)of 72000 mL^(3) g^(−1) h^(−1).This observed performance can be attributed to the cooperative effects of the smallest spherical grain size with a mesoporous structure,which is responsible for the larger specific surface area and available surface-active oxygenated species.The cooperative effect of the good reducibility,higher ratio of active species(OLat/OAds),and results of density functional theory(DFT)calculations suggested that the total oxidation of CH_(4) over the mesoporous Mn_(3)O_(4) SPs might take place via a two-term process in which both the Langmuir−Hinshelwood and Mars−van Krevelen mechanisms are cooperatively involved.