Shape memory alloy (SMA) reinforced smart structure can be used to make structural shape and strength selfadapted and structural damage self-restrained. Although SMA smart structures without damages were extensively...Shape memory alloy (SMA) reinforced smart structure can be used to make structural shape and strength selfadapted and structural damage self-restrained. Although SMA smart structures without damages were extensively studied, researches on SMA smart structures with damages have rarely been reported thus far. In this paper, thermo-mechanical behaviors of SMA fiber reinforced smart structures with damages are analyzed through a shear lag model and the variational principle, Mathematical expressions of the meso-displacement field and the stress-strain field of a typical element with damages are obtained, and a failure criterion for interface failure between SMA fibers and matrix is established, which is applied to an example. Results presented herein may provide a theoretical foundation for further studies on integrity of SMA smart structures.展开更多
Significant structural vibration is an undesirable characteristic in helicopter flight that leads to structural fatigue, poor ride quality for passengers and high acoustic signature. Previous Individual Blade Control ...Significant structural vibration is an undesirable characteristic in helicopter flight that leads to structural fatigue, poor ride quality for passengers and high acoustic signature. Previous Individual Blade Control (IBC) techniques to reduce these effects have been hindered by electromechanical limitations of piezoelectric actuators. The Smart Spring is an active tunable vibration absorber using IBC approach to adaptively alter the 'structural impedance' at the blade root. In this paper, a mathematical model was developed to predict the response under harmonic excitations. An adaptive notch algorithm was designed and implemented on a TMS320c40 DSP platform. Reference signal synthesis techniques were used to automatically track the shifts in the fundamental vibratory frequency due to variations in flight conditions. Closed-loop tests performed on the proof-of-concept hardware achieved significant vibration suppression at harmonic peaks as well as the broadband reduction in vibration. The investigation verified the capability of the Smart Spring to suppress multiple harmonic components in blade vibration through active impedance control.展开更多
In this paper, we have found a kind of interesting nonlinear phenomenon hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables ar...In this paper, we have found a kind of interesting nonlinear phenomenon hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables are anti- phase synchronized and part completely synchronized, can be achieved using a single linear controller with only one drive variable. Based on the stability theory of the fractional-order system, we investigated the possible existence of this new synchronization mechanism. Moreover, a helpful theorem, serving as a determinant for the gain of the controller, is also presented. Solutions of coupled systems are obtained numerically by an improved Adams Bashforth-Moulton algorithm. To support our theoretical analysis, simulation results are given.展开更多
基金The project supported by the National Natural Science Foundation of China(10072026.50135030) Aeronautical Science Foundation of China(01G52041)
文摘Shape memory alloy (SMA) reinforced smart structure can be used to make structural shape and strength selfadapted and structural damage self-restrained. Although SMA smart structures without damages were extensively studied, researches on SMA smart structures with damages have rarely been reported thus far. In this paper, thermo-mechanical behaviors of SMA fiber reinforced smart structures with damages are analyzed through a shear lag model and the variational principle, Mathematical expressions of the meso-displacement field and the stress-strain field of a typical element with damages are obtained, and a failure criterion for interface failure between SMA fibers and matrix is established, which is applied to an example. Results presented herein may provide a theoretical foundation for further studies on integrity of SMA smart structures.
文摘Significant structural vibration is an undesirable characteristic in helicopter flight that leads to structural fatigue, poor ride quality for passengers and high acoustic signature. Previous Individual Blade Control (IBC) techniques to reduce these effects have been hindered by electromechanical limitations of piezoelectric actuators. The Smart Spring is an active tunable vibration absorber using IBC approach to adaptively alter the 'structural impedance' at the blade root. In this paper, a mathematical model was developed to predict the response under harmonic excitations. An adaptive notch algorithm was designed and implemented on a TMS320c40 DSP platform. Reference signal synthesis techniques were used to automatically track the shifts in the fundamental vibratory frequency due to variations in flight conditions. Closed-loop tests performed on the proof-of-concept hardware achieved significant vibration suppression at harmonic peaks as well as the broadband reduction in vibration. The investigation verified the capability of the Smart Spring to suppress multiple harmonic components in blade vibration through active impedance control.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60973097).
文摘In this paper, we have found a kind of interesting nonlinear phenomenon hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables are anti- phase synchronized and part completely synchronized, can be achieved using a single linear controller with only one drive variable. Based on the stability theory of the fractional-order system, we investigated the possible existence of this new synchronization mechanism. Moreover, a helpful theorem, serving as a determinant for the gain of the controller, is also presented. Solutions of coupled systems are obtained numerically by an improved Adams Bashforth-Moulton algorithm. To support our theoretical analysis, simulation results are given.