On Twitter,people often use hashtags to mark the subject of a tweet.Tweets have specific themes or content that are easy for people to manage.With the increase in the number of tweets,how to automatically recommend ha...On Twitter,people often use hashtags to mark the subject of a tweet.Tweets have specific themes or content that are easy for people to manage.With the increase in the number of tweets,how to automatically recommend hashtags for tweets has received wide attention.The previous hashtag recommendation methods were to convert the task into a multi-class classification problem.However,these methods can only recommend hashtags that appeared in historical information,and cannot recommend the new ones.In this work,we extend the self-attention mechanism to turn the hashtag recommendation task into a sequence labeling task.To train and evaluate the proposed method,we used the real tweet data which is collected from Twitter.Experimental results show that the proposed method can be significantly better than the most advanced method.Compared with the state-of-the-art methods,the accuracy of our method has been increased 4%.展开更多
Relation extraction is an important task in NLP community.However,some models often fail in capturing Long-distance dependence on semantics,and the interaction between semantics of two entities is ignored.In this pape...Relation extraction is an important task in NLP community.However,some models often fail in capturing Long-distance dependence on semantics,and the interaction between semantics of two entities is ignored.In this paper,we propose a novel neural network model for semantic relation classification called joint self-attention bi-LSTM(SA-Bi-LSTM)to model the internal structure of the sentence to obtain the importance of each word of the sentence without relying on additional information,and capture Long-distance dependence on semantics.We conduct experiments using the SemEval-2010 Task 8 dataset.Extensive experiments and the results demonstrated that the proposed method is effective against relation classification,which can obtain state-ofthe-art classification accuracy just with minimal feature engineering.展开更多
文摘On Twitter,people often use hashtags to mark the subject of a tweet.Tweets have specific themes or content that are easy for people to manage.With the increase in the number of tweets,how to automatically recommend hashtags for tweets has received wide attention.The previous hashtag recommendation methods were to convert the task into a multi-class classification problem.However,these methods can only recommend hashtags that appeared in historical information,and cannot recommend the new ones.In this work,we extend the self-attention mechanism to turn the hashtag recommendation task into a sequence labeling task.To train and evaluate the proposed method,we used the real tweet data which is collected from Twitter.Experimental results show that the proposed method can be significantly better than the most advanced method.Compared with the state-of-the-art methods,the accuracy of our method has been increased 4%.
文摘Relation extraction is an important task in NLP community.However,some models often fail in capturing Long-distance dependence on semantics,and the interaction between semantics of two entities is ignored.In this paper,we propose a novel neural network model for semantic relation classification called joint self-attention bi-LSTM(SA-Bi-LSTM)to model the internal structure of the sentence to obtain the importance of each word of the sentence without relying on additional information,and capture Long-distance dependence on semantics.We conduct experiments using the SemEval-2010 Task 8 dataset.Extensive experiments and the results demonstrated that the proposed method is effective against relation classification,which can obtain state-ofthe-art classification accuracy just with minimal feature engineering.