期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube
1
作者 翁明 徐伟军 王瑞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第11期1024-1029,共6页
A sub-nanosecond pulse discharge tube is a gas discharge tube which can generate a rapid high-voltage pulse of kilo-volts in amplitude and sub-nanoseconds in width. In this paper, the sub-nanosecond pulse discharge tu... A sub-nanosecond pulse discharge tube is a gas discharge tube which can generate a rapid high-voltage pulse of kilo-volts in amplitude and sub-nanoseconds in width. In this paper, the sub-nanosecond pulse discharge tube and its working principles are described. Because of the phenomenon that the deformation process of the mercury film on the electrode surface lags behind the charging process, the mercury film deformation process affects the dynamic breakdown voltage of the tube directly. The deformation of the mercury film is observed microscopically, and the dynamic breakdown voltage of the tube is messured using an oscillograph. The results show that all the parameters in the charging process, such as charging resistance, charging capacitance and DC power supply, affect the dynamic breakdown voltage of the tube. Based on these studies, the output pulse amplitude can be controlled continuously and individually by adjusting the power supply voltage. When the DC power supply is adjusted from 7 kV to 10 kV, the dynamic breakdown voltage ranges from 6.5 kV to 10 kV. According to our research, a kind of sub-nanosecond pulse generator is made, with a pulse width ranging from 0.5 ns to 2.5 ns, a rise time from 0.32 ns to 0.58 ns, and a pulse amplitude that is adjustable from 1.5 kV to 5 kV. 展开更多
关键词 sub-nanosecond pulse generator mercury film deformation gas discharge breakdown voltage pulse parameter
下载PDF
Comparison of Three SVPWM Strategies
2
作者 Wei-Feng Zhang Yue-Hui Yu 《Journal of Electronic Science and Technology of China》 2007年第3期283-287,共5页
Three space vector pulse width modulation (SVPWM) schemes, called 7-segment space vector modulation (SVM), 5-segment SVM and 3-segment SVM are studied in this paper. The basic principle of SVPWM is presented. The ... Three space vector pulse width modulation (SVPWM) schemes, called 7-segment space vector modulation (SVM), 5-segment SVM and 3-segment SVM are studied in this paper. The basic principle of SVPWM is presented. The switching sequence of different scheme is described. The modulation signals, DC bus voltage utilization, and output line voltage harmonic of these schemes are analyzed by the MATLAB software with different modulation index M and frequency modulation index N. The simulation results are analyzed and show that discontinuous modulating functions lead a reduction of switching actions. The DC bus voltage utilization of three schemes is almost the same. For all three SVM, the frequency modulation index N will affect the harmonic characteristic, and the modulation index M will affect DC bus voltage utilization and the harmonic content. The experiment is implemented by the DSP of TMS320F2812. The results validate three algorithms and the simulation. 展开更多
关键词 DC bus voltage utilization HARMONIC switching loss switching sequence space vector pulse width modulation.
下载PDF
Filament Discharge Phenomena in Fingerprint Acquisition by Dielectric Barrier Discharge
3
作者 翁明 徐伟军 刘强 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第1期89-93,共5页
In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced... In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced the quality of fingerprint images. Obviously, it was necessary to eliminate streamer discharges in order to get good fingerprint images. The streamer discharge was considered to be the cause of the filament discharge in the experiment. The relationship between the critical electric field and the discharge gap was calculated with the Raether's model of streamer discharge. The calculated results and our experiment proved that it would be difficult for the streamer discharge to occur when the discharge gap was narrow. With a narrow discharge gap, the discharge was homogeneous, and the fingerprint images were clear and large in area. The images obtained in the experiment are very suitable for fingerprint identification as they contain more information. 展开更多
关键词 FINGERPRINT dielectric barrier discharge high-Voltage nanosecond pulse the streamer discharge atmospheric pressure glow
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部