Major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit of Edong ore district of Middle-Lower Yangtze River metallogenic belt were measured using ...Major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit of Edong ore district of Middle-Lower Yangtze River metallogenic belt were measured using EMPA (electron microprobe), LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) and LA-MC (multicollector)-ICP-MS methods in order to reveal the petroge- netic and metallogenic significance of the skarn-type iron deposits. The results show that the apatite in Chengchao granite is fluorapatite, which displays slight variation in major elements. The REE distribution pattern of the apatite is similar to that of the whole rocks, with strong negative Eu anomaly and low Sr/Y ratio. The concentration of Mn in apatite is low (140 ppm-591 ppm) and the Sr isotopic composition shows a limited variation from 0.706 9 to 0.708 2. The high oxygen fugacity of the Chengchao granite, implied by the low Mn content in apatite, is possibly attributed to contamination of the gypsum from sedimentary rock strata, which has long been thought to be an important factor that controls the Fe mineralization in the Middle-Lower Yangtze River metallogenic bell This study also proves that the Eu/Eu* value and Sr/Y ra- tio in apatite can be effectively used to identify the adakitie affinity. The in situ Sr isotope analysis of apatite is in consistent with the bulk rock analysis, which indicates that the apatite Sr isotope can represent the ini- tial Sr isotopic compositions of the magma. The Sr isotope and negative Eu anomaly in apatite imply that the Chengchao granite is likely sourced from crust-mantle mixed materials.展开更多
Spatiotemporal residual noise in terrestrial earth observation products,often caused by unfavorable atmospheric conditions,impedes their broad applications.Most users prefer to use gap-filled remote sensing products w...Spatiotemporal residual noise in terrestrial earth observation products,often caused by unfavorable atmospheric conditions,impedes their broad applications.Most users prefer to use gap-filled remote sensing products with time series reconstruction(TSR)algorithms.Applying currently available implementations of TSR to large-volume datasets is time-consuming and challenging for non-professional users with limited computation or storage resources.This study introduces a new open-source software package entitled‘HANTS-GEE’that implements a well-known and robust TSR algorithm,i.e.Harmonic ANalysis of Time Series(HANTS),on the Google Earth Engine(GEE)platform for scalable reconstruction of terrestrial earth observation data.Reconstruction tasks can be conducted on user-defined spatiotemporal extents when raw datasets are available on GEE.According to site-based and regional-based case evaluation,the new tool can effectively eliminate cloud contamination in the time series of earth observation data.Compared with traditional PC-based HANTS implementation,the HANTS-GEE provides quite consistent reconstruction results for most terrestrial vegetated sites.The HANTS-GEE can provide scalable reconstruction services with accelerated processing speed and reduced internet data transmission volume,promoting algorithm usage by much broader user communities.To our knowledge,the software package is thefirst tool to support full-stack TSR processing for popular open-access satellite sensors on cloud platforms.展开更多
基金supported by the National Key R & D Program of China (No. 2016YFC0600206)the China Geological Survey (No. 12120114051801)
文摘Major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit of Edong ore district of Middle-Lower Yangtze River metallogenic belt were measured using EMPA (electron microprobe), LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) and LA-MC (multicollector)-ICP-MS methods in order to reveal the petroge- netic and metallogenic significance of the skarn-type iron deposits. The results show that the apatite in Chengchao granite is fluorapatite, which displays slight variation in major elements. The REE distribution pattern of the apatite is similar to that of the whole rocks, with strong negative Eu anomaly and low Sr/Y ratio. The concentration of Mn in apatite is low (140 ppm-591 ppm) and the Sr isotopic composition shows a limited variation from 0.706 9 to 0.708 2. The high oxygen fugacity of the Chengchao granite, implied by the low Mn content in apatite, is possibly attributed to contamination of the gypsum from sedimentary rock strata, which has long been thought to be an important factor that controls the Fe mineralization in the Middle-Lower Yangtze River metallogenic bell This study also proves that the Eu/Eu* value and Sr/Y ra- tio in apatite can be effectively used to identify the adakitie affinity. The in situ Sr isotope analysis of apatite is in consistent with the bulk rock analysis, which indicates that the apatite Sr isotope can represent the ini- tial Sr isotopic compositions of the magma. The Sr isotope and negative Eu anomaly in apatite imply that the Chengchao granite is likely sourced from crust-mantle mixed materials.
基金supported by the National Natural Science Foundation of China(grant number 42171371 and No.41701492)Massimo Menenti acknowledges the support of the MOST High Level Foreign Expert program(grant number G2022055010L)the Chinese Academy of Sciences President s International Fellowship Initiative(grant number 2020VTA0001).
文摘Spatiotemporal residual noise in terrestrial earth observation products,often caused by unfavorable atmospheric conditions,impedes their broad applications.Most users prefer to use gap-filled remote sensing products with time series reconstruction(TSR)algorithms.Applying currently available implementations of TSR to large-volume datasets is time-consuming and challenging for non-professional users with limited computation or storage resources.This study introduces a new open-source software package entitled‘HANTS-GEE’that implements a well-known and robust TSR algorithm,i.e.Harmonic ANalysis of Time Series(HANTS),on the Google Earth Engine(GEE)platform for scalable reconstruction of terrestrial earth observation data.Reconstruction tasks can be conducted on user-defined spatiotemporal extents when raw datasets are available on GEE.According to site-based and regional-based case evaluation,the new tool can effectively eliminate cloud contamination in the time series of earth observation data.Compared with traditional PC-based HANTS implementation,the HANTS-GEE provides quite consistent reconstruction results for most terrestrial vegetated sites.The HANTS-GEE can provide scalable reconstruction services with accelerated processing speed and reduced internet data transmission volume,promoting algorithm usage by much broader user communities.To our knowledge,the software package is thefirst tool to support full-stack TSR processing for popular open-access satellite sensors on cloud platforms.