The paper concerns the problem on statistical description of the turbulent velocity pulsations by using the method of characteristic functional. The equations for velocity covariance and Green’s function, which descr...The paper concerns the problem on statistical description of the turbulent velocity pulsations by using the method of characteristic functional. The equations for velocity covariance and Green’s function, which describes an average velocity response to external force action, have been obtained. For the nonlinear term in the equation for velocity covariance, it has been obtained an exact representation in the form of two terms, which can be treated as describing a momentum transport due to turbulent viscosity and action of effective random forces (within the framework of traditional phenomenological description, the turbulent viscosity is only accounted for). Using a low perturbation theory approximation for high statistical moments, a scheme of closuring the chain of equations for statistical moments is proposed. As the result, we come to a closed set of equations for velocity covariance and Green’s function, the solution to which corresponds to summing up a certain infinite subsequence of total perturbation series.展开更多
The influence of a glow electrical discharge on the wake behind two cylinders was studied. This effect consists in a redistribution of the power in the velocity pulsation spectrum due to the discharge action on fluid ...The influence of a glow electrical discharge on the wake behind two cylinders was studied. This effect consists in a redistribution of the power in the velocity pulsation spectrum due to the discharge action on fluid flow. To treat this observation, we need a simple model of intermittent turbulent wake in the vicinity of cylinders. A variant of such model has been developed in the form of two coupled van-der-Pole oscillators representing two interacting von Karman vortex streets behind the cylinders. According to the model, the set of the global wake modes and its concurrence are discussed. Accordingly, a mechanism of the glow discharge effect on the cylinders wake has been proposed.展开更多
文摘The paper concerns the problem on statistical description of the turbulent velocity pulsations by using the method of characteristic functional. The equations for velocity covariance and Green’s function, which describes an average velocity response to external force action, have been obtained. For the nonlinear term in the equation for velocity covariance, it has been obtained an exact representation in the form of two terms, which can be treated as describing a momentum transport due to turbulent viscosity and action of effective random forces (within the framework of traditional phenomenological description, the turbulent viscosity is only accounted for). Using a low perturbation theory approximation for high statistical moments, a scheme of closuring the chain of equations for statistical moments is proposed. As the result, we come to a closed set of equations for velocity covariance and Green’s function, the solution to which corresponds to summing up a certain infinite subsequence of total perturbation series.
文摘The influence of a glow electrical discharge on the wake behind two cylinders was studied. This effect consists in a redistribution of the power in the velocity pulsation spectrum due to the discharge action on fluid flow. To treat this observation, we need a simple model of intermittent turbulent wake in the vicinity of cylinders. A variant of such model has been developed in the form of two coupled van-der-Pole oscillators representing two interacting von Karman vortex streets behind the cylinders. According to the model, the set of the global wake modes and its concurrence are discussed. Accordingly, a mechanism of the glow discharge effect on the cylinders wake has been proposed.