ZnO nanorods were synthesized using the sol-gel method, and the effects of annealing temperature and Ce doping on the morphologies and optical properties of ZnO nanostructures were investigated in detail. The XRD meas...ZnO nanorods were synthesized using the sol-gel method, and the effects of annealing temperature and Ce doping on the morphologies and optical properties of ZnO nanostructures were investigated in detail. The XRD measurements showed that the as-synthesized ZnO nanostructures had a hexagonal wurtzite structure. SEM images showed that uniform nanorods formed at 900 °C. Photoluminescence measurements showed an ultraviolet emission peak and a relatively broad visible light emission peak for the samples sintered at different temperatures. The UV emission peak bathochromically shifted when the annealing temperature rose from 850 to 1000 °C. Ce doping decreased the synthesized temperature of the ZnO nanorods to 500 °C, and the UV peaks hypsochromically shifted.展开更多
Mg-doped Ni nanoparticles with good soft magnetic properties were prepared with the sol-gel method and were sintered at 400, 500, 600, and 900℃ in argon atmosphere, respectively. The structure and magnetic properties...Mg-doped Ni nanoparticles with good soft magnetic properties were prepared with the sol-gel method and were sintered at 400, 500, 600, and 900℃ in argon atmosphere, respectively. The structure and magnetic properties of the samples were studied by means of X-ray diffraction, TEM, and VSM magnetometers. X-Ray powder diffraction results show that Ni-Mg solid solution was formed with the single phase of face-centered cubic(fcc) structure. The particle size became larger with the increase of temperature. When the sintering temperature was 400 °C, the particle size was 6.3 nm, whereas it was 46.2 nm at 900 °C. Both the saturation magnetization(Ms) and the coercivity were enhanced with the increase of the particle size. The Ms values of the samples ranged from 18.965 to 46.766 emu/g and the coercivity ranged from 1051.3568 to 9145.0848 A/m.展开更多
基金the National Natural Science Foundation of China(No.60778040)the Hi-tech Research and Development Program of China(No.2007AA032400448)+3 种基金the Science and Technology Bureau of Jilin Province(No.20060518)Gifted Youth Program of Jilin Province(No.20060123)the Science and Technology Office of Education of Jilin Province(No.2007162)the Science and Technology Bureau of Key Program for Ministry of Education(No.207025).
文摘ZnO nanorods were synthesized using the sol-gel method, and the effects of annealing temperature and Ce doping on the morphologies and optical properties of ZnO nanostructures were investigated in detail. The XRD measurements showed that the as-synthesized ZnO nanostructures had a hexagonal wurtzite structure. SEM images showed that uniform nanorods formed at 900 °C. Photoluminescence measurements showed an ultraviolet emission peak and a relatively broad visible light emission peak for the samples sintered at different temperatures. The UV emission peak bathochromically shifted when the annealing temperature rose from 850 to 1000 °C. Ce doping decreased the synthesized temperature of the ZnO nanorods to 500 °C, and the UV peaks hypsochromically shifted.
基金the National Natural Science Foundation of China(No.60778040)the Science and Technology Bureau of Jilin Province, China(No.20060518).
文摘Mg-doped Ni nanoparticles with good soft magnetic properties were prepared with the sol-gel method and were sintered at 400, 500, 600, and 900℃ in argon atmosphere, respectively. The structure and magnetic properties of the samples were studied by means of X-ray diffraction, TEM, and VSM magnetometers. X-Ray powder diffraction results show that Ni-Mg solid solution was formed with the single phase of face-centered cubic(fcc) structure. The particle size became larger with the increase of temperature. When the sintering temperature was 400 °C, the particle size was 6.3 nm, whereas it was 46.2 nm at 900 °C. Both the saturation magnetization(Ms) and the coercivity were enhanced with the increase of the particle size. The Ms values of the samples ranged from 18.965 to 46.766 emu/g and the coercivity ranged from 1051.3568 to 9145.0848 A/m.