期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Super-resolution Imaging of Telescopic Systems based on Optical-neural Network Joint Optimization
1
作者 You-Hong Sun Tao Zhang +4 位作者 Hao-Dong Shi Qiang Fu Jia-Nan Liu Kai-Kai Wang Chao Wang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第9期167-177,共11页
Optical telescopes are an important tool for acquiring optical information about distant objects,and resolution is an important indicator that measures the ability to observe object details.However,due to the effects ... Optical telescopes are an important tool for acquiring optical information about distant objects,and resolution is an important indicator that measures the ability to observe object details.However,due to the effects of system aberration,atmospheric seeing,and other factors,the observed image of ground-based telescopes is often degraded,resulting in reduced resolution.This paper proposes an optical-neural network joint optimization method to improve the resolution of the observed image by co-optimizing the point-spread function(PSF)of the telescopic system and the image super-resolution(SR)network.To improve the speed of image reconstruction,we designed a generative adversarial net(LCR-GAN)with light parameters,which is much faster than the latest unsupervised networks.To reconstruct the PSF trained by the network in the optical path,a phase mask is introduced.It improves the image reconstruction effect of LCR-GAN by reconstructing the PSF that best matches the network.The results of simulation and verification experiments show that compared with the pure deep learning method,the SR image reconstructed by this method is rich in detail and it is easier to distinguish stars or stripes. 展开更多
关键词 Techniques:image processing Telescopes Stars:imaging
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部