We analyze muscular dystrophy recorded by sEMG and use standard methodologies and nonlinear chaotic methods here including the RQA. We reach sufficient evidence that the sEMG signal contains a large chaotic component....We analyze muscular dystrophy recorded by sEMG and use standard methodologies and nonlinear chaotic methods here including the RQA. We reach sufficient evidence that the sEMG signal contains a large chaotic component. We have estimated the correlation dimension (fractal measure), the largest Lyapunov exponent, the LZ complexity and the %Rec and %Det of the RQA demonstrating that such indexes are able to detect the presence of repetitive hidden patterns in sEMG which, in turn, senses the level of MU synchronization within the muscle. The results give also an interesting methodological indication in the sense that it evidences the manner in which nonlinear methods and RQA must be arranged and applied in clinical routine in order to obtain results of clinical interest. We have studied the muscular dystrophy and evidence that the continuous regime of chaotic transitions that we have in muscular mechanisms may benefit in this pathology by the use of the NPT treatment that we have considered in detail in our previous publications.展开更多
In this case report we study the dynamics of the SMR band in a subject affected from Facioscapulohumeral Muscular Dystrophy and subjected to Ken Ware Neuro Physics treatment. We use the Generalized Mutual Information ...In this case report we study the dynamics of the SMR band in a subject affected from Facioscapulohumeral Muscular Dystrophy and subjected to Ken Ware Neuro Physics treatment. We use the Generalized Mutual Information (GMI) to analyze in detail the SMR band at rest during the treatment. Brain dynamics responds to a chaotic-deterministic regime with a complex behaviour?that?constantly self-rearranges and self-organizes such dynamics in function of the outside require-ments. We demonstrate that the SMR chaotic dynamics responds directly to such regime and that also decreasing in EEG during muscular activity really increases its ability of self-arrangement and self-organization in brain. The proposed novel method of the GMI is arranged by us so that it may?be used in several cases of clinical interest. In the case of muscular dystrophy here examined,?GMI?enables us to quantify with accuracy the improvement that the subject realizes during such?treatment.展开更多
We perform an analysis of brain-neuromuscular synchronization and coupling strength in muscular dystrophy before and after NPT treatment. In order to estimate with accuracy the level of brain synchronization, we intro...We perform an analysis of brain-neuromuscular synchronization and coupling strength in muscular dystrophy before and after NPT treatment. In order to estimate with accuracy the level of brain synchronization, we introduce and use the method of the cross GMI that was elaborated by Pompe. The finality is to account for the nonlinear chaotic dynamic contributions that regulate the dynamics. We find that this method is excellent and it may be applied in such case of sEMG and EEG study as well as at a general neurological level. By it we arrive to quantify the coupling strength and synchronization first between two muscular sections (left and right trapezes) and after between Brain activity, as recorded by the EEG, and the trapezes. We compare the results before and after the NPT treatment and we find that the improvement obtained following such treatment is very consistent. We have now in progress other studies relating in particular the application of such new methodologies to other more serious pathologies as the HSP (Hereditary Spastic Paraplegia).展开更多
文摘We analyze muscular dystrophy recorded by sEMG and use standard methodologies and nonlinear chaotic methods here including the RQA. We reach sufficient evidence that the sEMG signal contains a large chaotic component. We have estimated the correlation dimension (fractal measure), the largest Lyapunov exponent, the LZ complexity and the %Rec and %Det of the RQA demonstrating that such indexes are able to detect the presence of repetitive hidden patterns in sEMG which, in turn, senses the level of MU synchronization within the muscle. The results give also an interesting methodological indication in the sense that it evidences the manner in which nonlinear methods and RQA must be arranged and applied in clinical routine in order to obtain results of clinical interest. We have studied the muscular dystrophy and evidence that the continuous regime of chaotic transitions that we have in muscular mechanisms may benefit in this pathology by the use of the NPT treatment that we have considered in detail in our previous publications.
文摘In this case report we study the dynamics of the SMR band in a subject affected from Facioscapulohumeral Muscular Dystrophy and subjected to Ken Ware Neuro Physics treatment. We use the Generalized Mutual Information (GMI) to analyze in detail the SMR band at rest during the treatment. Brain dynamics responds to a chaotic-deterministic regime with a complex behaviour?that?constantly self-rearranges and self-organizes such dynamics in function of the outside require-ments. We demonstrate that the SMR chaotic dynamics responds directly to such regime and that also decreasing in EEG during muscular activity really increases its ability of self-arrangement and self-organization in brain. The proposed novel method of the GMI is arranged by us so that it may?be used in several cases of clinical interest. In the case of muscular dystrophy here examined,?GMI?enables us to quantify with accuracy the improvement that the subject realizes during such?treatment.
文摘We perform an analysis of brain-neuromuscular synchronization and coupling strength in muscular dystrophy before and after NPT treatment. In order to estimate with accuracy the level of brain synchronization, we introduce and use the method of the cross GMI that was elaborated by Pompe. The finality is to account for the nonlinear chaotic dynamic contributions that regulate the dynamics. We find that this method is excellent and it may be applied in such case of sEMG and EEG study as well as at a general neurological level. By it we arrive to quantify the coupling strength and synchronization first between two muscular sections (left and right trapezes) and after between Brain activity, as recorded by the EEG, and the trapezes. We compare the results before and after the NPT treatment and we find that the improvement obtained following such treatment is very consistent. We have now in progress other studies relating in particular the application of such new methodologies to other more serious pathologies as the HSP (Hereditary Spastic Paraplegia).