We report the cumulative reaction probabilities(CRP)of the three-dimensional Cl+H_(2)→H+HCl calculated on the Stern-Persky-Klein potential energy surface,using the generalized Newton variational principle,for total a...We report the cumulative reaction probabilities(CRP)of the three-dimensional Cl+H_(2)→H+HCl calculated on the Stern-Persky-Klein potential energy surface,using the generalized Newton variational principle,for total angular momentum J=0,over a total reaction energy range from 9 to 19 kcal/mol.The relation between CRP and reaction rate constants,as well as the calculation for complete reaction rates(summed over all J),bypassing the direct calculation of the CRP's for J>0,are also discussed.展开更多
Surface self-diffusion measurements of tungsten atoms and other defects were carried out by means of field emission fluctuation method at various positions along the zones(011)-(112)and(011)-(001).The experimental res...Surface self-diffusion measurements of tungsten atoms and other defects were carried out by means of field emission fluctuation method at various positions along the zones(011)-(112)and(011)-(001).The experimental results shod that the self-diffusion on stepped surface can be used to investigate thermal roughening procedures.展开更多
This mini review examines the current advances and future prospects of chemical approaches in deformable bioelectronics,emphasizing their transformative potential in healthcare and other sectors.The mini review outlin...This mini review examines the current advances and future prospects of chemical approaches in deformable bioelectronics,emphasizing their transformative potential in healthcare and other sectors.The mini review outlines novel fabrication strategies that rely on chemical principles to create adaptable,comfortable,and durable bioelectronic devices that are capable of seamlessly integrating into the dynamic biological environment.The discussion also extends to the integration of innovative device concepts that enhance the outcomes in both sensing and modulation functionalities.Performance-enhancing strategies that use chemistry to refine the sensitivity and precision of these devices are also highlighted.Moreover,the mini review explores the emerging applications of chemically enhanced bioelectronic devices in healthcare,reflecting the potential of this field to revolutionize patient care and improve health monitoring.In the outlook section,this mini review investigates the promising future of transient and living bioelectronics,emphasizing the pivotal role of chemical approaches in their development.It additionally covers the potential of chemical techniques in powering bioelectronic devices using biological systems and discusses the prospective applications of chemically synthesized bioelectronic devices outside of healthcare.While the field has made substantial progress,this mini review also identifies challenges that must be addressed,thus underlining the necessity for continued research and chemical innovation in bioelectronics.展开更多
We compare modern variational and nonvariational calculations of molecular scattering and present for H2Br system the selected numerically exact state-to-state reaction probabilities obtained from quantum variational ...We compare modern variational and nonvariational calculations of molecular scattering and present for H2Br system the selected numerically exact state-to-state reaction probabilities obtained from quantum variational scattering calculations,on the most accurate available potential energy surface.展开更多
This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical ana...This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical analysis and provided a formalism for dynamical resonance calculations. In this paper we present accurate numerical results for two non-trivial dynamical processes, namely, models of diatomic molecular predissociation and of barrier potential scattering for resonances. The results presented in this paper confirm our theoretical analysis, remove a theoretical ambiguity on determination of the complex scaling parameter, and provide an improved understanding for dynamical resonance calculations in rigged Hilbert space.展开更多
The classical theory of the rate of unimolecular isomerization developed by Gray and Rice as extended by Zhao and Rice is applied to the calculation of the rate of isomerization in model systems which have linear asym...The classical theory of the rate of unimolecular isomerization developed by Gray and Rice as extended by Zhao and Rice is applied to the calculation of the rate of isomerization in model systems which have linear asymmetric double well potentials. We are interested in this system for two reasons. First, we are interested in the detailed dynamical processes for the mentioned system because it is widely related to practical chemical reactions. Second, the present model system has an asymmetric double well potential, which provides a different test of the accuracy of the approximations used in the Gray-Zhao-Rice theory than posed by previous applications. We have calculated relaxation rates and relaxation times for the model systems on different time scales. We find that for the systems under studies the Gray-Zhao-Rice version of the classical theory of isomerization rate yields values in good agreement with those generated from trajectory calculations and from the Reactive Island theory of De Leon et al.展开更多
It is known that rock anisotropy can significantly influence the phase and energy velocities of an elastic wave,as well as its reflection/transmission(R/T)coefficients.As a result,it can distort the velocity analysis ...It is known that rock anisotropy can significantly influence the phase and energy velocities of an elastic wave,as well as its reflection/transmission(R/T)coefficients.As a result,it can distort the velocity analysis of seismic-reflection data.In this work we present a velocity analysis for seismic-reflection data based on the available anisotropic rock parameters.We analyzed the created errors on time-depth relation of the seismic-reflection data in neglecting rock anisotropy and/or neglecting the difference between energy velocity and phase velocity,including the case of wide-angle reflection.The calculated results show that the effect of rock anisotropy on time-depth relation of seismic-reflection data is dependent not only on the values of anisotropic parameters,but also on the space arrangement of both source and receiver-array.For all studied cases(weak,moderate or strong anisotropy),we found that the effect of rock anisotropy on time-depth relation could not be neglected.Nevertheless,for the case of weak anisotropy,the energy velocity may be replaceable by the phase velocity to obtain a very good approximation on time-depth relation.Consequently,the seismic-reflection data processing algorithm for numerical computations can be simplified.展开更多
Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics, and engineered nanostructures, with close interactions with biology at the cellular or...Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics, and engineered nanostructures, with close interactions with biology at the cellular or tissue levels, have already yielded a spectrum of new applications. Many new designs emerge, including of organ-on-a-chip systems, biodegradable implants, electroceutical devices, minimally invasive neuro-prosthetic tools, and soft robotics. In this review, we highlight a few recent advances of the fabrication and application of smart bio-hybrid systems, with a particular emphasis on the three-dimensional (3D) bio-integrated devices that mimic the 3D feature of tissue scaffolds. Moreover, neurons integrated with engineered nanostructures for wireless neuromodulation and dynamic neural output are briefly discussed. We also discuss the progress in the construction of cell-enabled soft robotics, where a tight coupling of the synthetic and biological parts is crucial for efficient function. Finally, we summarize the approaches for enhancing bio-integration with biomimetic micro- and nanostructures.展开更多
Based on an acoustic logging transmission network and the engineering pattern of a sliding wave in acoustic logging, analysis and calculations have been performed in a study of the effects of the electric-acoustic and...Based on an acoustic logging transmission network and the engineering pattern of a sliding wave in acoustic logging, analysis and calculations have been performed in a study of the effects of the electric-acoustic and acoustic-electric conversions of the transducers on the acoustic logging signal. The results show that acoustic-electric conversion through the transducer can cause not only a serious disturbance in the signal amplitude, but also an apparent transmission delay. For engineering applications, the amplitude variation and transmission delay must be accounted for in a practical analysis of the acoustic logging signal in rocks. The results also show that with enhanced understanding and proper justification, the error caused by the acoustic-electric conversion can be significantly reduced in evaluation of the cement bond quality of a cased well, and the accuracy of rock porosity calculated using the measured acoustic velocity can be increased.展开更多
Engineered cells have opened up a new avenue for scientists and engineers to achieve specialized biological functions.Nanomaterials,such as silicon nanowires and quantum dots,can establish tight interfaces with cells ...Engineered cells have opened up a new avenue for scientists and engineers to achieve specialized biological functions.Nanomaterials,such as silicon nanowires and quantum dots,can establish tight interfaces with cells either extra-or intracellularly,and they have already been widely used to control cellular functions.The future exploration of nanomaterials in cellular engineering may reveal numerous opportunities in both fundamental bioelectric studies and clinic applications.In this review,we highlight several nanomaterials-enabled non-genetic approaches to fabricating engineered cells.First,we briefly review the latest progress in engineered or synthetic cells,such as protocells that create cell-like behaviors from nonliving building blocks,and cells made by genetic or chemical modifications.Next,we illustrate the need for non-genetic cellular engineering with semiconductors and present some examples where chemical synthesis yields complex morphology or functions needed for biointerfaces.We then provide discussions in detail about the semiconductor nanostructure-enabled neural,cardiac,and microbial modulations.We also suggest the need to integrate tissue engineering with semiconductor devices to carry out more complex functions.We end this review by providing our perspectives for future development in non-genetic cellular engineering.展开更多
CONSPECTUS:Studying the formation and interactions between biological systems and artificial materials is significant for probing complex biophysical behaviors and addressing challenging biomedical problems.Bioelectri...CONSPECTUS:Studying the formation and interactions between biological systems and artificial materials is significant for probing complex biophysical behaviors and addressing challenging biomedical problems.Bioelectrical interfaces,especially nanostructure-based,have improved compatibility with cells and tissues and enabled new approaches to biological modulation.In particular,free-standing and remotely activated bioelectrical devices demonstrate potential for precise biophysical investigation and efficient clinical therapies.Interacting with single cells or organelles requires devices of sufficiently small size for high resolution probing.Nanoscale semiconductors,given their diverse functionalities,are promising device platforms for subcellular modulation.展开更多
Charge transport through single molecular neutral mono- and di-cobalt(Ⅱ) complexes with re-conjugated macromolecular wire was investigated. Scanning tunnelling spectroscopy (STS) studies revealed that the mono-co...Charge transport through single molecular neutral mono- and di-cobalt(Ⅱ) complexes with re-conjugated macromolecular wire was investigated. Scanning tunnelling spectroscopy (STS) studies revealed that the mono-cobalt(Ⅱ) complex showed a pronounced rectifying effect with a large rectification ratio and finely featured NDR peaks, while the di-cobalt(Ⅱ) complex showed a relatively symmetric electron transport without clear NDR peaks. The results are explained based on the dipolar and electronic effects.展开更多
文摘We report the cumulative reaction probabilities(CRP)of the three-dimensional Cl+H_(2)→H+HCl calculated on the Stern-Persky-Klein potential energy surface,using the generalized Newton variational principle,for total angular momentum J=0,over a total reaction energy range from 9 to 19 kcal/mol.The relation between CRP and reaction rate constants,as well as the calculation for complete reaction rates(summed over all J),bypassing the direct calculation of the CRP's for J>0,are also discussed.
文摘Surface self-diffusion measurements of tungsten atoms and other defects were carried out by means of field emission fluctuation method at various positions along the zones(011)-(112)and(011)-(001).The experimental results shod that the self-diffusion on stepped surface can be used to investigate thermal roughening procedures.
基金supported by the National Science Foun-dation(NSF DMR-2105321,NSF CBET-2128140).
文摘This mini review examines the current advances and future prospects of chemical approaches in deformable bioelectronics,emphasizing their transformative potential in healthcare and other sectors.The mini review outlines novel fabrication strategies that rely on chemical principles to create adaptable,comfortable,and durable bioelectronic devices that are capable of seamlessly integrating into the dynamic biological environment.The discussion also extends to the integration of innovative device concepts that enhance the outcomes in both sensing and modulation functionalities.Performance-enhancing strategies that use chemistry to refine the sensitivity and precision of these devices are also highlighted.Moreover,the mini review explores the emerging applications of chemically enhanced bioelectronic devices in healthcare,reflecting the potential of this field to revolutionize patient care and improve health monitoring.In the outlook section,this mini review investigates the promising future of transient and living bioelectronics,emphasizing the pivotal role of chemical approaches in their development.It additionally covers the potential of chemical techniques in powering bioelectronic devices using biological systems and discusses the prospective applications of chemically synthesized bioelectronic devices outside of healthcare.While the field has made substantial progress,this mini review also identifies challenges that must be addressed,thus underlining the necessity for continued research and chemical innovation in bioelectronics.
文摘We compare modern variational and nonvariational calculations of molecular scattering and present for H2Br system the selected numerically exact state-to-state reaction probabilities obtained from quantum variational scattering calculations,on the most accurate available potential energy surface.
文摘This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical analysis and provided a formalism for dynamical resonance calculations. In this paper we present accurate numerical results for two non-trivial dynamical processes, namely, models of diatomic molecular predissociation and of barrier potential scattering for resonances. The results presented in this paper confirm our theoretical analysis, remove a theoretical ambiguity on determination of the complex scaling parameter, and provide an improved understanding for dynamical resonance calculations in rigged Hilbert space.
文摘The classical theory of the rate of unimolecular isomerization developed by Gray and Rice as extended by Zhao and Rice is applied to the calculation of the rate of isomerization in model systems which have linear asymmetric double well potentials. We are interested in this system for two reasons. First, we are interested in the detailed dynamical processes for the mentioned system because it is widely related to practical chemical reactions. Second, the present model system has an asymmetric double well potential, which provides a different test of the accuracy of the approximations used in the Gray-Zhao-Rice theory than posed by previous applications. We have calculated relaxation rates and relaxation times for the model systems on different time scales. We find that for the systems under studies the Gray-Zhao-Rice version of the classical theory of isomerization rate yields values in good agreement with those generated from trajectory calculations and from the Reactive Island theory of De Leon et al.
基金supported by the National Natural Science Foundation of China(40974078)the US Department of Energy(DE-FC2608NT0 005643)+1 种基金the Natural Science Foundation of Shaanxi Province,China (2007D15)North Dakota Industrial Commission with five industrial companies:Encore Acquisition,Hess,Marathon Oil,St.Mary Land & Exploration,and Whiting Petroleum(NDIC-G015-031)
文摘It is known that rock anisotropy can significantly influence the phase and energy velocities of an elastic wave,as well as its reflection/transmission(R/T)coefficients.As a result,it can distort the velocity analysis of seismic-reflection data.In this work we present a velocity analysis for seismic-reflection data based on the available anisotropic rock parameters.We analyzed the created errors on time-depth relation of the seismic-reflection data in neglecting rock anisotropy and/or neglecting the difference between energy velocity and phase velocity,including the case of wide-angle reflection.The calculated results show that the effect of rock anisotropy on time-depth relation of seismic-reflection data is dependent not only on the values of anisotropic parameters,but also on the space arrangement of both source and receiver-array.For all studied cases(weak,moderate or strong anisotropy),we found that the effect of rock anisotropy on time-depth relation could not be neglected.Nevertheless,for the case of weak anisotropy,the energy velocity may be replaceable by the phase velocity to obtain a very good approximation on time-depth relation.Consequently,the seismic-reflection data processing algorithm for numerical computations can be simplified.
文摘Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics, and engineered nanostructures, with close interactions with biology at the cellular or tissue levels, have already yielded a spectrum of new applications. Many new designs emerge, including of organ-on-a-chip systems, biodegradable implants, electroceutical devices, minimally invasive neuro-prosthetic tools, and soft robotics. In this review, we highlight a few recent advances of the fabrication and application of smart bio-hybrid systems, with a particular emphasis on the three-dimensional (3D) bio-integrated devices that mimic the 3D feature of tissue scaffolds. Moreover, neurons integrated with engineered nanostructures for wireless neuromodulation and dynamic neural output are briefly discussed. We also discuss the progress in the construction of cell-enabled soft robotics, where a tight coupling of the synthetic and biological parts is crucial for efficient function. Finally, we summarize the approaches for enhancing bio-integration with biomimetic micro- and nanostructures.
基金supported by the National Natural Science Foundation of China (40974078)
文摘Based on an acoustic logging transmission network and the engineering pattern of a sliding wave in acoustic logging, analysis and calculations have been performed in a study of the effects of the electric-acoustic and acoustic-electric conversions of the transducers on the acoustic logging signal. The results show that acoustic-electric conversion through the transducer can cause not only a serious disturbance in the signal amplitude, but also an apparent transmission delay. For engineering applications, the amplitude variation and transmission delay must be accounted for in a practical analysis of the acoustic logging signal in rocks. The results also show that with enhanced understanding and proper justification, the error caused by the acoustic-electric conversion can be significantly reduced in evaluation of the cement bond quality of a cased well, and the accuracy of rock porosity calculated using the measured acoustic velocity can be increased.
基金B.Z.T acknowledges a primary support from the University of Chicago Materials Research Science and Engineering Center,which is funded by the National Science Foundation under award number DMR-1420709.B.Z.T also acknowledges support from the National Institutes of Health(No.NIH1DP2NS101488).
文摘Engineered cells have opened up a new avenue for scientists and engineers to achieve specialized biological functions.Nanomaterials,such as silicon nanowires and quantum dots,can establish tight interfaces with cells either extra-or intracellularly,and they have already been widely used to control cellular functions.The future exploration of nanomaterials in cellular engineering may reveal numerous opportunities in both fundamental bioelectric studies and clinic applications.In this review,we highlight several nanomaterials-enabled non-genetic approaches to fabricating engineered cells.First,we briefly review the latest progress in engineered or synthetic cells,such as protocells that create cell-like behaviors from nonliving building blocks,and cells made by genetic or chemical modifications.Next,we illustrate the need for non-genetic cellular engineering with semiconductors and present some examples where chemical synthesis yields complex morphology or functions needed for biointerfaces.We then provide discussions in detail about the semiconductor nanostructure-enabled neural,cardiac,and microbial modulations.We also suggest the need to integrate tissue engineering with semiconductor devices to carry out more complex functions.We end this review by providing our perspectives for future development in non-genetic cellular engineering.
基金This work was supported by the US Office of Naval Research(N000141612958)Air Force Office of Scientific Research(FA9550-20-1-0387)+2 种基金the National Science Foundation(NSF CMMI-1848613,NSF DMR-2011854)A.Prominski acknowledges support from the NSF MRSEC Graduate Fellowship(NSF DMR-2011854)B.A.M.acknowledges support from the Stamps Scholars Program.
文摘CONSPECTUS:Studying the formation and interactions between biological systems and artificial materials is significant for probing complex biophysical behaviors and addressing challenging biomedical problems.Bioelectrical interfaces,especially nanostructure-based,have improved compatibility with cells and tissues and enabled new approaches to biological modulation.In particular,free-standing and remotely activated bioelectrical devices demonstrate potential for precise biophysical investigation and efficient clinical therapies.Interacting with single cells or organelles requires devices of sufficiently small size for high resolution probing.Nanoscale semiconductors,given their diverse functionalities,are promising device platforms for subcellular modulation.
基金the financial supports of the National Science Foundationthe NSF MRSEC program at the University of Chicago
文摘Charge transport through single molecular neutral mono- and di-cobalt(Ⅱ) complexes with re-conjugated macromolecular wire was investigated. Scanning tunnelling spectroscopy (STS) studies revealed that the mono-cobalt(Ⅱ) complex showed a pronounced rectifying effect with a large rectification ratio and finely featured NDR peaks, while the di-cobalt(Ⅱ) complex showed a relatively symmetric electron transport without clear NDR peaks. The results are explained based on the dipolar and electronic effects.