期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Coordinate Control,Motion Optimization and Sea Experiment of a Fleet of Petrel-Ⅱ Gliders 被引量:5
1
作者 Dong-Yang Xue Zhi-Liang Wu +1 位作者 Yan-Hui Wang Shu-Xin Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第1期127-141,共15页
The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditiona... The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditional gliders and AUVs.The research on control strategy and energy consumption minimization for the hybrid gliders is necessary both in methodology and experiment. A multi-layer coordinate control strategy is developed for the fleet of hybrid underwater gliders to control the gliders’ motion and formation geometry with optimized energy consumption. The inner layer integrated in the onboard controller and the outer layer integrated in the ground control center or the deck controller are designed. A coordinate control model is proposed based on multibody theory through adoption of artificial potential fields. Considering the existence of ocean flow, a hybrid motion energy consumption model is constructed and an optimization method is designed to obtain the heading angle, net buoyancy, gliding angle and the rotate speed of screw propeller to minimize the motion energy with consideration of the ocean flow. The feasibility of the coordinate control system and motion optimization method has been verified both by simulation and sea trials. Simulation results show the regularity of energy consumption with the control variables. The fleet of three Petrel-Ⅱ gliders developed by Tianjin University is deployed in the South China Sea. The trajectory error of each glider is less than 2.5 km, the formation shape error between each glider is less than 2 km, and the difference between actual energy consumption and the simulated energy consumption is less than 24% actual energy. The results of simulation and the sea trial prove the feasibility of the proposed coordinate control strategy and energy optimization method. In conclusion, a coordinate control system and a motion optimization method is studied, which can be used for reference in theoretical research and practical fleet operation for both the traditional gliders and hybrid gliders. 展开更多
关键词 Underwater glider Petrel-Ⅱ Coordinate control Path planning Artificial potential fields(APFs) Energy consumption
下载PDF
Stability Analysis of Hybrid-Driven Underwater Glider 被引量:9
2
作者 NIU Wen-dong WANG Shu-xin +2 位作者 WANG Yan-hui SONG Yang ZHU Ya-qiang 《China Ocean Engineering》 SCIE EI CSCD 2017年第5期528-538,共11页
Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have... Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steady- state operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulations.and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider. 展开更多
关键词 hybrid-driven underwater glider stability analysis numerical simulation field trials
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部