Accurately predicting the trajectories of surrounding vehicles and assessing the collision risks are essential to avoid side and rear-end collisions caused by cut-in.To improve the safety of autonomous vehicles in the...Accurately predicting the trajectories of surrounding vehicles and assessing the collision risks are essential to avoid side and rear-end collisions caused by cut-in.To improve the safety of autonomous vehicles in the mixed traffic,this study proposes a cut-in prediction and risk assessment method with considering the interactions of multiple traffic participants.The integration of the support vector machine and Gaussian mixture model(SVM-GMM)is developed to simultaneously predict cut-in behavior and trajectory.The dimension of the input features is reduced through Chebyshev fitting to improve the training efficiency as well as the online inference performance.Based on the predicted trajectory of the cut-in vehicle and the responsive actions of the autonomous vehicles,two risk measurements are introduced to formulate the comprehensive interaction risk through the combination of Sigmoid function and Softmax function.Finally,the comparative analysis is performed to validate the proposed method using the naturalistic driving data.The results show that the proposed method can predict the trajectory with higher precision and effectively evaluate the risk level of a cut-in maneuver compared to the methods without considering interaction.展开更多
With the rapid development of artificial intelligence,face recognition systems are widely used in daily lives.Face recognition applications often need to process large amounts of image data.Maintaining the accuracy an...With the rapid development of artificial intelligence,face recognition systems are widely used in daily lives.Face recognition applications often need to process large amounts of image data.Maintaining the accuracy and low latency is critical to face recognition systems.After analyzing the two-tier architecture“client-cloud”face recognition systems,it is found that these systems have high latency and network congestion when massive recognition requirements are needed to be responded,and it is very inconvenient and inefficient to deploy and manage relevant applications on the edge of the network.This paper proposes a flexible and efficient edge computing accelerated architecture.By offloading part of the computing tasks to the edge server closer to the data source,edge computing resources are used for image preprocessing to reduce the number of images to be transmitted,thus reducing the network transmission overhead.Moreover,the application code does not need to be rewritten and can be easily migrated to the edge server.We evaluate our schemes based on the open source Azure IoT Edge,and the experimental results show that the three-tier architecture“Client-Edge-Cloud”face recognition system outperforms the state-of-art face recognition systems in reducing the average response time.展开更多
基金supported in part by the Key-Area Researchand Development Program of Guangdong Province(2020B0909050003)the Program of Jiangxi(20204ABC03A13)。
文摘Accurately predicting the trajectories of surrounding vehicles and assessing the collision risks are essential to avoid side and rear-end collisions caused by cut-in.To improve the safety of autonomous vehicles in the mixed traffic,this study proposes a cut-in prediction and risk assessment method with considering the interactions of multiple traffic participants.The integration of the support vector machine and Gaussian mixture model(SVM-GMM)is developed to simultaneously predict cut-in behavior and trajectory.The dimension of the input features is reduced through Chebyshev fitting to improve the training efficiency as well as the online inference performance.Based on the predicted trajectory of the cut-in vehicle and the responsive actions of the autonomous vehicles,two risk measurements are introduced to formulate the comprehensive interaction risk through the combination of Sigmoid function and Softmax function.Finally,the comparative analysis is performed to validate the proposed method using the naturalistic driving data.The results show that the proposed method can predict the trajectory with higher precision and effectively evaluate the risk level of a cut-in maneuver compared to the methods without considering interaction.
基金This work is supported by the National Key Research and Development Program of China under Grant(No.2016YFB1000302)the National Natural Science Foundation of China under Grant(No.61832020).
文摘With the rapid development of artificial intelligence,face recognition systems are widely used in daily lives.Face recognition applications often need to process large amounts of image data.Maintaining the accuracy and low latency is critical to face recognition systems.After analyzing the two-tier architecture“client-cloud”face recognition systems,it is found that these systems have high latency and network congestion when massive recognition requirements are needed to be responded,and it is very inconvenient and inefficient to deploy and manage relevant applications on the edge of the network.This paper proposes a flexible and efficient edge computing accelerated architecture.By offloading part of the computing tasks to the edge server closer to the data source,edge computing resources are used for image preprocessing to reduce the number of images to be transmitted,thus reducing the network transmission overhead.Moreover,the application code does not need to be rewritten and can be easily migrated to the edge server.We evaluate our schemes based on the open source Azure IoT Edge,and the experimental results show that the three-tier architecture“Client-Edge-Cloud”face recognition system outperforms the state-of-art face recognition systems in reducing the average response time.