期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization and Molecular Mapping of a Stripe Rust Resistance Gene in Synthetic Wheat CI110 被引量:5
1
作者 REN Qiang LIU Hui-juan +4 位作者 ZHANG Zeng-yan FENG Jing XU Shi-chang PU Zong-jun XIN Zhi-yong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第4期521-527,共7页
Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most destructive diseases of wheat(Triticum aestivum L.).To diversify stripe rust-resistant resources for wheat breeding programs,a CIMMYT... Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most destructive diseases of wheat(Triticum aestivum L.).To diversify stripe rust-resistant resources for wheat breeding programs,a CIMMYT synthetic wheat line CI110 was identified to be resistant to 28 isolates of Pst,including 6 Chinese prevalent races CYR28-CYR33.Genetic analysis indicated that a single dominant gene was responsible for the stripe rust resistance in CI110,temporarily designated YrC110.A molecular map,harboring YrC110 and 9 linked SSR markers,was constructed through simple sequence repeat(SSR),and bulked segregant analysis.These linked markers and YrC110 were assigned on the short arm of chromosome 1B using the Chinese Spring nullisomic-tetrasomic and ditelosomic stocks.Gene postulation based on seedling reaction patterns to 30 Pst isolates suggested that the resistance gene YrC110 seemed different from the other known resistance genes tested,such as Yr9,Yr10,Yr15,Yr24,and Yr26/YrCH42.Four SSR markers Xbarc187150,Xgwm18227,Xgwm11223,and Xbarc240292 distinguished YrC110 from Yr10,Yr15,Yr24,and Yr26/YrCH42,and could be used as diagnostic ones for YrC110 in wheat resistant breeding programs against stripe rust. 展开更多
关键词 synthetic wheat Puccinia striiformis f.sp.tritici resistance gene simple sequence repeat(SSR) marker gene postulation
下载PDF
The GATA transcription factor TaGATA1 recruits demethylase TaELF6-A1 and enhances seed dormancy in wheat by directly regulating TaABI5 被引量:2
2
作者 Xuening Wei Yuyan Li +4 位作者 Xiuliang Zhu Xin Liu Xingguo Ye Miaoping Zhou Zengyan Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第5期1262-1276,共15页
Seed dormancy is an important agronomic trait in crops, and plants with low dormancy are prone to preharvest sprouting(PHS) under high-temperature and humid conditions. In this study,we report that the GATA transcript... Seed dormancy is an important agronomic trait in crops, and plants with low dormancy are prone to preharvest sprouting(PHS) under high-temperature and humid conditions. In this study,we report that the GATA transcription factor TaGATA1 is a positive regulator of seed dormancy by regulating TaABI5 expression in wheat.Our results demonstrate that TaGATA1 overexpression significantly enhances seed dormancy and increases resistance to PHS in wheat. Gene expression patterns, abscisic acid(ABA) response assay, and transcriptome analysis all indicate that TaGATA1 functions through the ABA signaling pathway. The transcript abundance of TaABI5, an essential regulator in the ABA signaling pathway,is significantly elevated in plants overexpressing TaGATA1. Chromatin immunoprecipitation assay(ChIP) and transient expression analysis showed that TaGATA1 binds to the GATA motifs at the promoter of TaABI5 and induces its expression.We also demonstrate that TaGATA1 physically interacts with the putative demethylase TaELF6-A1, the wheat orthologue of Arabidopsis ELF6.ChIP–qPCR analysis showed that H3K27me3 levels significantly decline at the TaABI5 promoter in the TaGATA1-overexpression wheat line and that transient expression of TaELF6-A1 reduces methylation levels at the TaABI5 promoter, increasing TaABI5 expression. These findings reveal a new transcription module, including TaGATA1–TaELF6-A1–TaABI5, which contributes to seed dormancy through the ABA signaling pathway and epigenetic reprogramming at the target site. TaGATA1 could be a candidate gene for improving PHS resistance. 展开更多
关键词 ABSCISIC ACID INSENSITIVE5(ABI5) common wheat DEMETHYLASE GATA transcription factor preharvest sprouting seed dormancy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部